1097 record(s)
Type of resources
Contact for the resource
Provided by
Representation types
Update frequencies
From 1 - 10 / 1097
  • This presentation on the EPSRC project, CONTAIN, was presented at the Cranfield Biannual, 21.04.15. Grant number: EP/K036025/1.

  • The datasets consist of soil moisture (hourly-weekly), river stage (1 min), and groundwater level (hourly) collected as part of the BRAVE project (NE/M008827/1 and NE/M008983/1) to understand the resilience of boreholes in low-yielding aquifers in the River Volta Basin to climate. The data were collected from physical observatories in Sanon (Burkina Faso) and Aniabisi (Ghana). Soil moisture data were logged hourly beneath contrasting land uses and roaming soil moisture surveys were also undertaken across a wider access tube array. River stage was monitored at the catchment outlet in Sanon and groundwater levels were measured in both catchments.

  • Carbon and oxygen isotopic composition of planktic foraminifera spanning the early and middle Eocene succession recovered from borehole 16/28-Sb01. For description of this sedimentary sequence see Haughton et al. 2005. Petroleum Geology: North-West Europe and Global Perspectives, Proceedings of the 6th Petroleum Geology Conference, 1077–1094.

  • Data were collected on olivine hosted melt inclusions from four Icelandic eruptions: Stapafell, Haleyjabunga, Berserkjahraun and Heilagsdalsfjall. These data were released as part of the paper "The global melt inclusion C/Ba array: Mantle variability, melting process, or degassing?", published in Geochimica et Cosmochimica Acta, with doi: 10.1016/j.gca.2020.09.030. The data collected to place new constraints on the volatile content of the Icelandic mantle source. The data include measurement of C and H by Secondary Ion Mass Spectrometry, lithophile trace elements (including Ba and Nb) by Secondary Ion Mass Spectrometry, and measurement of major element composition of the melt inclusions and their olivine hosts by Electron Probe Microanalysis. The data were collected in 2017-2018, between Edinburgh (NERC ion probe facility) and Cambridge (EPMA).

  • The measurements and data were obtained to study the release of carbon dioxide during the chemical weathering of sedimentary rocks, and how these CO2 fluxes were related to environmental parameters (temperature, hydrology). Weathering of sedimentary rocks can result in CO2 release from the oxidation of rock organic carbon oxidation, but also due to the oxidation of sulfide minerals, production of sulfuric acid and subsequent release of CO2 from carbonate minerals. The rock-derived carbon sources are understudied, and form an important part of the geological carbon cycle. The CO2 flux measurements were made on 5 rock chambers (H4, H6, H7, H8 and H13) installed in the Draix-Bleone Critical Zone Observatory, France, on outcrops of Jurassic marls. Measurements and data were collected from December 2016 to May 2019. Regular visits to the site (~4 per year) returned data on total CO2 flux (Total-CO2-flux.csv). This was explored as a function of temperature and ambient hydroclimate (precipitation). The datasets include the total CO2 flux measured at each visit to a chamber, and measurements of the internal chamber temperature. To determine the source of CO2 measured in the chambers, we trapped the CO2 using zeolite sieves and recovered it in the laboratory. The radiocarbon activity (reported as fraction modern, F14C) and its stable isotope composition (d13C) were measured from CO2 collected from chambers H4 and H6 over the sampling period (Radiocarbon-data.csv). These were used in a mixing analysis to partition the source of CO2 using a mixing model approach (Partitioned-CO2-fluxes.csv) as explained in full in the published paper Soulet et al., 2021, Nature Geoscience. We also measured the geochemical characteristics of the bedrocks being measured (rock-geochemical-composition.csv), including the organic carbon concentration, inorganic carbon concentration and their isotopic composition. Finally, we measured environmental variables of interest - the chamber temperature and the air temperature at the Draix-Bleone observatory (chamber-temperature.csv and Air-temperature-at-laval-le-plateau-weather-station.csv, respectively). This research was funded by a European Research Council Starting Grant to Robert Hilton (ROC-CO2 project, grant 678779) and radiocarbon and stable isotope measurements were funded by the Natural Environment Research Council (NERC), UK, (NERC Environmental Isotope Facility NEIF Radiocarbon Allocation 2074.1017) to Guillaume Soulet, Robert Hilton and Mark Garnett. Full details of data analysis and interpretation can be found in Soulet et al., 2021, Temperature control on CO2 emissions from the weathering of sedimentary rocks, Nature Geoscience

  • The data consist of several spreadsheets detailing the temporal and geographical distributions of testudinates (turtles, terrapins and tortoises) through time. Occurrence data includes information on taxonomy, geographical distribution and geological age and is limited to Mesozoic-Paleogene taxa. These data were compiled from the published literature on fossil turtles for NERC Standard Grant NE/J020613/1. These data form the basis for understanding the role of changing global climates and geography on testudinate diversity and distribution though time, with the aim of providing historical baseline data for modern conservation biology. The data represent a summary over 150 years of published research on fossil turtles and their relatives and were compiled over a period of 3.5 years during the tenure of a grant. To date they have provided the data used in analyses presented by Nicholson et al. (2015, 2016) and Waterson et al. (2016). Details of the analyses and the results obtained can be found in these papers.

  • The data include:- sample description file: sample full names, site, hole, depth etc., a quick petrographic description of the sample and the embedding serpentinite mud, and information regarding sample selection for bulk rock chemistry - microprobe analyses of selected samples - bulk rock major and trace elements from 2 labs (SARM, Nancy and VUB, Brussels) - Oxygen Isotopes of both pore fluids and rock samples with estimated temperature equilibrium

  • The solubility of water (H2O) in carbon dioxide (CO2) and nitrogen (N2) mixtures (xN2 = 0.050 and 0.100, mole fraction) has been investigated at 25 and 40 degrees C in the pressure range between 8 and 18 MPa. The motivation for this work is to aid the understanding of water solubility in complex CO2-based mixtures, which is required for the safety of anthropogenic CO2 transport via pipeline for carbon capture and storage (CCS) technology. The measurements have been performed using an FTIR spectroscopic approach and demonstrate that this method is a suitable technique to determine the concentration of water in both pure CO2 and CO2 + N2 mixtures. The presence of N2 lowers the mole concentration of water in CO2 by up to 42% for a given pressure in the studied conditions and this represents important data for the development of pipelines for CCS. This work also provides preliminary indications that the key parameters for the solubility of H2O in such CO2 + N2 mixtures are the temperature and the overall density of the fluid mixture and not solely the given pressure of the CCS mixture. This could have implications for understanding the parameters required to be monitored during the safer transportation of CO2 mixtures in CCS pipelines. The paper is available at, DOI: 10.1016/j.ijggc.2015.02.002. UKCCSRC Grants UKCCSRC-C1-21 and UKCCSRC-C2-185.

  • This poster on the UKCCSRC Call 1 project, Tractable Equation of State for CO2 Mixtures, was presented at the Cambridge Biannual, 02.04.14. Grant number: UKCCSRC-C1-22.

  • This poster on the UKCCSRC Call 2 project, Novel Materials and Reforming Processing Route for the Production of Ready-Separated CO2/N2/H2 from Natural Gas Feedstocks, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-181.