cl_maintenanceAndUpdateFrequency

notApplicable

971 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
From 1 - 10 / 971
  • A possible effect of a carbon dioxide leak from an industrial sub-sea floor storage facility, utilised for Carbon Capture and Storage, is that escaping carbon dioxide gas will dissolve in sediment pore waters and reduce their pH. To quantify the scale and duration of such an impact, a novel, field scale experiment was conducted, whereby carbon dioxide gas was injected into unconsolidated sub-sea floor sediments for a sustained period of 37 days. During this time pore water pH in shallow sediment (5 mm depth) above the leak dropped >0.8 unit, relative to a reference zone that was unaffected by the carbon dioxide. After the gas release was stopped, the pore water pH returned to normal background values within a three-week recovery period. Further, the total mass of carbon dioxide dissolved within the sediment pore fluids above the release zone was modelled by the difference in DIC between the reference and release zones. Results showed that between 14 and 63% of the carbon dioxide released during the experiment could remain in the dissolved phase within the sediment pore water. This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Peter Taylor et. al. Doi:10.1016/j.ijggc.2014.09.006.

  • Data derived from NERC grant NE/I024127/1 1) 36Cl data and supporting chemistry. This folder contains the 36Cl concentration data, data on sample locations on fault planes, major and trace element concentrations, and similar data for upper slope samples. 2) Depth versus density data for trenches in colluvium. This folder contains measurements of weights and volumes of colluvial material removed from trenches for some of the 36Cl sites. These data are used to calculate colluvial densities to inform modelling of the 36Cl data. 3) Field Site Documentation. This folder contains field data and field photographs and movies of the sample sites. It also contains a file that summarises interpretations of the data in this folder, to provide numerical values needed to support modeling the 36Cl data to recover fault slip histories. 4) Google Earth Files to locate sample sites. This folder contains kmz files for Google Earth to locate the sample sites. 5) Terrestrial LiDAR data for each 36Cl sample sites. This folder contains Terrestrial LiDAR data (from a LiDAR on a tripod).

  • Many of the research results from the SACS and CO2STORE projects are published in the scientific literature but in a somewhat fragmented form. This report consolidates some of the key findings into a manual of observations and recommendations relevant to underground saline aquifer storage, aiming to provide technically robust guidelines for effective and safe storage of CO2 in a range of geological settings. This will set the scene for companies, regulatory authorities, nongovernmental organisations, and ultimately, the interested general public, in evaluating possible new CO2 storage projects in Europe and elsewhere. The report can be downloaded from http://nora.nerc.ac.uk/2959/.

  • The file contain groundwater level/depth (WL), Groundwater and Surface Water Quality data (EC (micro-siemens per centimetre or µS/cm), Temperature (°C) and pH) for 49 points under fortnightly monitoring relevant to Gro for GooD research project in Kwale County, Kenya. Blank - Data not available. Gro for GooD: Groundwater Risk Management for Growth and Development

  • It is now generally accepted that anthropogenic CO2 emissions are contributing to the global rise in atmospheric CO2 concentrations. One possibility for reducing carbon dioxide emissions is to remove it from the flue gases of coal-fired power stations and dispose of it in underground geological reservoirs, possibly offshore in the North Sea. The feasibility of this option has been studied in detail by a consortium of European partners. As part of this study, natural occurrences of carbon dioxide were identified and preliminary information from these was obtained. The best characterised are found in the United States where the carbon dioxide reserves are exploited for use in tertiary enhanced oil recovery (EOR) programs in the Texas oilfields. The carbon dioxide reserves occur in geological structures and lithologies which are similar to those present in the North Sea. As such, these fields offer an ideal natural analogue for the disposal of carbon dioxide, since the interactions with groundwaters and reservoir lithologies have occurred on both spatial and temporal scales relevant to geological processes. Those carbon dioxide fields currently being exploited have already been studied to a limited extent by the oil companies involved. However, further study is required to provide information on the potential effects that disposing of large quantities of carbon dioxide might have on groundwaters and reservoir quality. In addition, more detailed information will be obtained on the interactions which occur during EOR using carbon dioxide. This paper presents data on some of the natural carbon dioxide fields, and compares the effects of these natural fluid-rock interactions with those observed in laboratory experiments performed to establish what reactions occur during the geological disposal of carbon dioxide. doi:10.1016/0196-8904(95)00309-6. http://www.sciencedirect.com/science/article/pii/0196890495003096.

  • The mechanical data (confining and injection pressures) recorded during Vickers indentation experiments on samples of shale materials. These experiments were conducted on the I12 beamline, Diamond Light Source, Harwell as part of beamtime EE17606-1 between 31/01/18 and 05/02/18.

  • This poster was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-14. The data consists of a poster presented at the UKCCSRC biannual meeting in Cranfield, April 20th 2015. The poster describes an overview of work carried-out on behalf of the 'Fault seal controls on CO2 storage capacity in aquifers' project funded by the UKCCS Research Centre, grant number UKCCSRC-C1-14. Three main work strands are briefly described: 1) The Captain Sandstone aquifer is studied for the geomechanical integrity of faults, 2) Shallow gas accumulations in the Netherlands sector of the Southern North Sea provide an opportunity to study their coincidence with faulting while commonalities in the nature of the faults provide an indication of factors that might lead to fault leakage in CO2 storage sites. 3) The Fizzy gas field which is naturally rich in CO2 is studied for its fault seal potential as a natural analogue for fault-bounded storage sites.

  • This poster on the UKCCSRC Call 1 project Determination of water solubility limits in CO2 mixtures to deliver water specification levels for CO2 transportation was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-21. Studies of the phase behaviour and water solubility of pure and impure CO2 are of great relevance to the transport phase of the carbon capture and storage (CCS) process. For transport through carbon steel pipelines, CO2 and any impurities present must be present as a single phase to avoid corrosion, and subsequent loss of pipeline integrity. Trace impurities such as H2 and N2 have been shown to alter the phase behaviour of the CO2 at high pressure. Understanding the effect of these impurities on the solubility of H2O in CO2 is vital to confirm the safety and viability of CO2 transport through carbon steel pipelines.

  • This spreadsheet contains 21 oxygen isotope measurements for hematite and mixed hematite/goethite samples from the supergene profiles of the Spence and Cerro Colorado porphyry copper deposits in the Central Andes. Columns are also included which contain calculated isotopic values for weathering fluids which were present at the time of iron oxide formation. These data are presented and discussed in the G-cubed paper 'A rusty record of weathering and groundwater movement in the hyperarid Central Andes' (Shaw et al., 2021). Weathering fluid isotopic values are calculated using the published fractionation factors of Clayton & Epstein (1961), Yapp (1990) and Bao & Koch (1999). The authors have the most confidence in the fluid values obtained using the fractionation factor of Yapp (1990), for reasons outlined in the publication.

  • The following dataset provides climate and cave monitoring data from Cueva de Asiul northern Spain between 2010 and 2014. This data set was initially presented in Smith et al., (2016) Cave monitoring and the potential for palaeoclimate reconstruction from Cueva de Asiul, Cantabria (N. Spain). International Journal of Speleology, 45(1), 1-9. This data set represents the majority of cave monitoring undertaken at this site as part of a NERC funded PhD project (NERC studentship grant NE/I527953/1), data collection either occurred within this single cave site (43°19’0’’N, 3°35’28’’W) or within 1km of the cave in the village of Matienzo. The data set includes high resolution monitoring data for a range of climatic parameters including, cave and external temperature, rainfall direction, amount and oxygen isotope value, soil and cave air pCO2 concentration and carbon isotope value, cave drip rates and oxygen and deuterium isotope values. All data was collected using standard automated logging systems and the data/ samples were analysed either at Lancaster University, UK or at the NERC isotope geosciences laboratory, British Geological Survey, UK. Any missing data is a result of automated logger malfunction and is explained in full in the above cited paper. In combination this data offers a very high resolution, multiyear veiw into hydrological and cave ventilation processes, each of which play a major role in controlling speleothem growth and chemical makeup in Cueva de Asiul. The data set presents the pertinent background monitoring for the accurate interpretation of speleothems from this cave site. Those who may be interested in the data set include cave scientists who wish to implement a monitoring station/understand how climatic parameters influence speleothem development, or those who wish to obtain focused climate data from the Matienzo region between 2010 and 2014. The data set was collected by members of Lancaster University and the Matienzo caving expedition as part of NERC studentship grant NE/I527953/1. All cave monitoring was undertaken with kind permission from Gobierno de Cantabria, Cultura.