2000
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
-
Meteosat-7 and its predecessors were the first generation of earth observation dedicated geostationary satellites located at 36000 km above the intersection of the Equator and the Greenwich Meridian. Although superseded by MSG-1 (renamed Meteosat-8) in 2005, Meteosat-7 remained as back-up at 0o longitude until 14th June 2006. Meteosat-7 will be moved to 63oE longitude to continue coverage of the Indian Ocean and take over from Meteosat-5. Meteosat-7 was launched by the European Space Agency and operated by Eumetsat. This dataset collection contains visible, water vapour, thermal and infra-red images of the North Atlantic Ocean, Europe and North Africa from the Meteosat geostationary satellite. Images are archived from 11th November 1999 to June 2006. These images are public. Data were collected every half hour in three wavelength channels for visible, infra-red and water vapour images.
-
The 'Measurement of H2O Absorption Cross-Sections for the Exploitation of GOME’ project is a European Space Agency (ESA) funded study. The GOME and SCIAMACHY instruments are downward-viewing satellite-borne spectrometers that observe back-scattered solar radiation from the Earth's atmosphere. Global data on the distributions and vertical profiles of a large number of chemical species present in the atmosphere can be determined from the observations. Ozone distributions are a key measurement, but many other atmospheric gases and vapours involved in ozone chemistry and global climate change are also measured. Water vapour is of particular significance because it dominates the energy balance of the atmosphere. Also the spectrum of water vapour must be adequately understood and accounted for when deriving the concentration or distribution of trace atmospheric species. The dataset contains distributions and vertical profiles of atmospheric chemical species (in particular ozone) as well as the distribution of trace atmospheric species. This dataset is public.
-
NERC-UTLS Ozone Thematic Program, 'Night-Time Chemistry of the Upper Troposphere and Lower Stratosphere' project measuring sunrise NO3 and sunset NO2 column densities above Aberystwyth, Mid-Wales.
-
The UTLS-Ozone THESEO (Third European Stratospheric Experiment on Ozone) project was joint activity between the Centre of Atmospheric Sciences at the University of Cambridge and the National Physical Laboratory. THESEO's overall scientific objective were to contribute to the understanding of middle latitude ozone loss by making measurements of a number of important tracers of atmospheric motion and photochemistry, and by interpreting these measurements with state-of-the-art models of atmospheric chemistry and transport. The particular aim of the proposal was to extend THESEO measurements of tracer and chemically active gases both spatially and temporally to provide more comprehensive coverage in the middle latitude low stratosphere and upper troposphere. The measurements were complement the similar EU funded measurements whose focus were primarily high and mid-latitudes in 1998/99. They were part of THESEO 2000 which was an extension of THESEO and which formed the basis of European collaboration with US SOLVE experiment which is studying Arctic ozone loss in the 1999/2000 winter. Together, these measurements provide a unique data set for the study of chemistry and transport processes at mid latitudes. They studied annual transport through the middle latitude lower stratosphere and the processes of mixing with tropical and polar air. Data were interpreted using 3D chemical transport models already developed at Cambridge. The large amount of data collected in polar middle and tropical latitudes during THESEO provided a unique opportunity for the new mid-latitude data to contribute to the understanding of middle latitude ozone decline and, in particular, to understanding the relative importance of in situ ozone loss and transport from other regions. Balloon flights were made from Esrange Kiruna station during the 1999/2000 winter, with balloon payloads incorporating the same UK and European instruments deployed during THESEO.
-
These data are held by the BADC for the Natural Environment Research Council (NERC) Molecular Spectroscopy Facility (MSF). MSF provides world-class scientific equipment and support for infrared (IR),visible, and ultraviolet (UV) spectroscopy. The MSF laboratories are used by many UK and international customers in a wide range of research and development programmes. The data are spectra of various atmospheric gases. These data are public. The data held covers the following areas: Water vapour line parameters Molecular oxygen absorption cross-sections Molecular oxygen/nitrogen absorption cross-sections Hydrofluorocarbon (HFC) infrared absorption cross-sections Perfluorocarbon (PFC) infrared absorption cross-sections Computer software
-
Meteosat-7 and its predecessors were the first generation of earth observation dedicated geostationary satellites located at 36000 km above the intersection of the Equator and the Greenwich Meridian. Although superseded by MSG-1 (renamed Meteosat-8) in 2005, Meteosat-7 remained as back-up at 0o longitude until 14th June 2006. Meteosat-7 will be moved to 63oE longitude to continue coverage of the Indian Ocean and take over from Meteosat-5. Meteosat-7 was launched by the European Space Agency and operated by Eumetsat. This dataset contains visible images from Meteosat Geostationary Satellites First Generation over Europe.
-
The Meteorological Research Flight (MRF) was a Met Office facility, which flew a well-instrumented C-130 Hercules aircraft for atmospheric research purposes. This dataset contains airborne atmospheric and chemistry measurements taken on board the Met Office C-130 Hercules aircraft flight A749 for the Atmospheric Chemistry and Transport of Ozone in the upper troposphere-lower stratosphere (UTLS) (ACTO) campaign.
-
Meteosat-7 and its predecessors were the first generation of earth observation dedicated geostationary satellites located at 36000 km above the intersection of the Equator and the Greenwich Meridian. Although superseded by MSG-1 (renamed Meteosat-8) in 2005, Meteosat-7 remained as back-up at 0o longitude until 14th June 2006. Meteosat-7 will be moved to 63oE longitude to continue coverage of the Indian Ocean and take over from Meteosat-5. Meteosat-7 was launched by the European Space Agency and operated by Eumetsat. This dataset contains infa-red images from Meteosat Geostationary Satellites First Generation over full disc.
-
Meteosat-7 and its predecessors were the first generation of earth observation dedicated geostationary satellites located at 36000 km above the intersection of the Equator and the Greenwich Meridian. Although superseded by MSG-1 (renamed Meteosat-8) in 2005, Meteosat-7 remained as back-up at 0o longitude until 14th June 2006. Meteosat-7 will be moved to 63oE longitude to continue coverage of the Indian Ocean and take over from Meteosat-5. Meteosat-7 was launched by the European Space Agency and operated by Eumetsat. This dataset contains visible images from Meteosat Geostationary Satellites First Generation satellites over full disc.
-
The fully Global Mean Sea-Level Pressure (GMSLP) dataset, was developed in collaboration with CSIRO (Scientific and Industrial Research for Australia), Australia and NIWA (National Institute of Water and Atmospheric Research), New Zealand. It is an historical, 5 deg. x 5 deg. gridded monthly dataset covering the period 1871-1994. The Met Office Hadley Centre recently produced the HadSLP1 dataset which replaces the Global Mean Sea Level Pressure (GMSLP) data sets, and is a unique combination of monthly globally-complete fields of land and sea pressure observations a 5 degree latitude-longitude grid from 1871 to 1998.