2004
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
-
THIS DATASET HAS BEEN WITHDRAWN **This dataset was created for the "Britain beneath our feet" atlas using information extracted from the Geochemical Baseline Survey Of The Environment (G-BASE) For The UK . For Arsenic in soil data please see Geochemical Baseline Survey Of The Environment (G-BASE) For The UK ** Geochemical Baseline Survey Of The Environment (G-BASE) coverage for arsenic in soil. The G-BASE programme involves systematic sampling and the determination of chemical elements in samples of stream sediment, stream water and, locally, soil, to build up a picture of the surface chemistry of the UK. The average sample density for stream sediments and water is about one site per 1.5-2km square. Analytical precision is high with strict quality control to ensure countrywide consistency. Results have been standardised to ensure seamless joins between geochemical sampling campaigns. The data provide baseline information on the natural abundances of elements, against which anomalous values due to such factors as mineralisation and industrial contamination may be compared. Published in Britain beneath our feet atlas.
-
THIS DATASET HAS BEEN WITHDRAWN **This dataset was created for the "Britain beneath our feet" atlas using information extracted from the Geochemical Baseline Survey Of The Environment (G-BASE) For The UK . For Copper in Stream Sediment data please see Geochemical Baseline Survey Of The Environment (G-BASE) For The UK ** Geochemical Baseline Survey Of The Environment (G-BASE) coverage for copper in stream sediment. The G-BASE programme involves systematic sampling and the determination of chemical elements in samples of stream sediment, stream water and, locally, soil, to build up a picture of the surface chemistry of the UK. The average sample density for stream sediments and water is about one site per 1.5-2km square. Analytical precision is high with strict quality control to ensure countrywide consistency. Results have been standardised to ensure seamless joins between geochemical sampling campaigns. The data provide baseline information on the natural abundances of elements, against which anomalous values due to such factors as mineralisation and industrial contamination may be compared. Published in Britain beneath our feet atlas.
-
The dataset comprises maps and aerial photographs of the Falkland Islands. The maps are printers films and final paper printed originals of Falkland Islands OS maps, compiled for the Falkland Islands Government and the Foreign and Commonwealth Office by the Overseas Directorate of the Ordnance Survey. They were discarded by the Ordnance Survey around 2004, and offered to BGS for storage on behalf of the Falkland Islands Government. The Falkland Islands Government retains copyright interest in the maps. There are no access or usage constraints for BGS staff for BGS purposes. The aerial photographs and associated paper overlays represent copies of field slips of geological maps that were compiled by BGS under contract to the Falkland Islands Government. Copyright remains with the Falkland Islands Government , but there are no access or usage constraints for BGS staff for BGS purposes. Access to both datasets are restricted to BGS staff.
-
The University of Wales, Aberystwyth, 1290mhz mobile wind profiler - now referred to as the University of Manchester mobile wind profiler, was operated at the Weybourne Atmospheric Observatory during the 2nd field campaign of the Tropospheric ORganic CHemistry Experiment (TORCH) Project. The TORCH project was part of the Natural Environmental Research Council's (NERC) Polluted Troposphere research programme. The field campaign ran from 22nd April to 28th May 2004, during which period the mobile wind profiler obtained vertical profiles of the horizontal and vertical wind components. For each signal beam profiles of the signal to noise (SNR) ratio and spectral widths were also taken. The data consist of files in the netCDF binary format and plots in PNG format. Data are available to all BADC registered users under the Government Open Data licence.
-
The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. The project is based on an airborne field campaign (August-September 2004) using the Facility for Airborne Atmospheric Measurements (FAAM) aircraft. The flights were based in Treviso (Italy) and covered areas over Northern Italy, the Adriatic Sea and between Northern Italy and the West coast of the Black Sea. The ADRIEX archive includes forecast trajectories and other products to support ADRIEX flight plans (computed using European Centre for Medium-Range Weather Forecasts (ECMWF) wind fields) and Aerosol Concentrations collected aboard the FAAM Bae-146 aircraft in August and September 2004.
-
THIS DATASET HAS BEEN WITHDRAWN **This dataset was created for the "Britain beneath our feet" atlas using information extracted from the Geochemical Baseline Survey Of The Environment (G-BASE) For The UK . For Fluoride in Stream Water data please see Geochemical Baseline Survey Of The Environment (G-BASE) For The UK ** Geochemical Baseline Survey of the Environment (G-BASE) coverage for Fluoride in stream water. The G-BASE programme involves systematic sampling and the determination of chemical elements in samples of stream sediment, stream water and, locally, soil, to build up a picture of the surface chemistry of the UK. The average sample density for stream sediments and water is about one site per 1.5-2km square. Analytical precision is high with strict quality control to ensure countrywide consistency. Results have been standardised to ensure seamless joins between geochemical sampling campaigns. The data provide baseline information on the natural abundances of elements, against which anomalous values due to such factors as mineralisation and industrial contamination may be compared. Published in Britain beneath our feet atlas.
-
The FAAM is a large atmospheric research BAE-146 aircraft, run jointly by the NERC and the UK Met Office. It has been in operation since March 2004 and is at the scientists' disposal through a scheme of project selection. Data collected by this aircraft is stored in the FAAM data archive and includes "core" data, provided by the FAAM as a support to all flight campaigns, and "non-core" data, the nature of which depends on the scientific goal of the campaign. FAAM instruments provide four types of data: - parameters required for aircraft navigation; - meteorology; - cloud physics; - chemical composition. The data are accompanied by extensive metadata, including flight logs. The FAAM apparatus includes a number of core instruments permanently onboard and operated by FAAM staff members, and a variety of other instruments, grouped into chemistry kit and cloud physics kit, that can be fitted onto the aircraft on demand. FAAM is also a member of the EUropean Facility for Airborne Research (EUFAR) fleet of research aircraft. Apart from some exceptions, access to processed core data is public but requires an online application (application is granted automatically after agreement with the FAAM Conditions of Use). Access to non-core data is ruled by the relevant protocols in force for each project.
-
The aim of HITRAN (high-resolution transmission molecular absorption database) was to characterise the amount and wavelength-dependence of absorption by water vapour and other atmospheric species. It was part of the Natural Environment Research Council (NERC) funded Clouds, Water Vapour and Climate (CWVC) program. The dataset contains spectral line parameters derived from laboratory measurements on pure water vapour, and mixtures of water vapour and air. The measurements were made at STFC Rutherford Appleton Laboratory Molecular Spectroscopy Facility, and the line fitting was carried out by the Department of Meteorology at the University of Reading. The spectral line parameters are displayed in HITRAN format. Water vapour lines were fitted to the laboratory data in the spectral range 5037 to 5585 cm-1. These data are public.
-
The Convective Storm Initiation Project (CSIP) aimed to further the understanding of the mechanisms responsible for the initiation of precipitating convection in the maritime environment of southern England; i.e. to understand why convective clouds form and develop into precipitating clouds in a particular location. Data have been collected from the 13th June 2005 to the 25th August 2005 by the Ultra-violet Raman lidar at Chilbolton Observatory, Hampshire. The dataset contains measurements of attenuated backscatter coefficients of aerosols within the atmosphere, and humidity mixing ratios. Plots of the attenuated backscatter coefficient, and of the humidity mixing ratios, at different heights are also available.
-
THIS DATASET HAS BEEN WITHDRAWN **This dataset was created for the "Britain beneath our feet" atlas using information extracted from the Geochemical Baseline Survey Of The Environment (G-BASE) For The UK . For Uranium in stream sediment data please see Geochemical Baseline Survey Of The Environment (G-BASE) For The UK ** Geochemical Baseline Survey Of The Environment (G-BASE) coverage for Uranium in stream sediment. The G-BASE programme involves systematic sampling and the determination of chemical elements in samples of stream sediment, stream water and, locally, soil, to build up a picture of the surface chemistry of the UK. The average sample density for stream sediments and water is about one site per 1.5-2km square. Analytical precision is high with strict quality control to ensure countrywide consistency. Results have been standardised to ensure seamless joins between geochemical sampling campaigns. The data provide baseline information on the natural abundances of elements, against which anomalous values due to such factors as mineralisation and industrial contamination may be compared.