Creation year

2017

1558 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Scale
Resolution
From 1 - 10 / 1558
  • The Lexicon of Named Rock Units provides definitions of lithostratigraphic, lithodemic, and litho-morpho-genetic geological units of the United Kingdom and its associated continental shelf. The Lexicon focuses mainly on units of Member, Formation, Group and higher rank (and equivalents) but it also includes information on some units of lesser rank, notably economically important coal seams and laterally extensive marine bands. It includes superficial and bedrock units. It includes synonyms and other names not currently recognised by the BGS or regarded as obsolete. Full Lexicon entries include geological unit name, a persistent unique identifier, map code, currency, rank, parent unit and rank, age, lithology, definitions of boundaries, thickness, previous and alternative names, geographical extent, type localities, and bibliographical references. This dataset is a snapshot of the live database taken on the 14th September 2017.

  • Global warming during the Palaeocene-Eocene Thermal Maximum (PETM, ~56 Ma) is commonly interpreted as being driven by massive destabilization of carbon from surficial sedimentary reservoirs. If correct, this has important implications for the amplification of future fossil fuel emissions via carbon-climate feedbacks. In our study we provided new paired records of boron and carbon isotope changes in the ocean that questions this long-held interpretation. Our data are implemented in an Earth system model to reconstruct the unfolding carbon cycle dynamics across the event. Strong evidence for a larger (>10,000 PgC) and on average isotopically heavier (> -17‰) carbon source leads us to identify volcanism associated with the North Atlantic Igneous Province as the main driver of the PETM. We also find that although organic carbon feedbacks with climate played a more minor role in driving the event than previously thought, organic matter burial was important in ultimately sequestering this carbon and driving the recovery of the system. Data presented in this data set comprise geochemical elemental, as well as boron, carbon and oxygen isotopic data from surface dwelling foraminifera Morozovella Subbotina. Alongside the boron isotopic data we also provide reconstructed surface water pH with corresponding uncertainties for our preferred pH reconstruction.

  • The vast majority of palaeomagnetic recordings held in rock and meteorites are contained in small inhomogeneously magnetised particles that have a single-vortex (SV) domain state. The reliability and fidelity of the magnetic recording in these particles can only be determined using a numerical micromagnetic approach. This data set provides the first comprehensive examination of domain state as a function of grain size, grain shape and temperature for both magnetite and iron. The results show that SV domain states are highly stable, and in some cases more stable than their ‘ideal’ uniformly magnetized counterparts. With the data sets in this archive it is possible to determine the magnetic recording and stability characteristics of assemblies of grains that can be matched to a wide variety of grain distributions found in terrestrial rocks and meteorites.

  • Data derived from NERC Grant NE/J022632/1, Sequence alignments and resulting phylogenetic hypotheses from Harrington et al. (2016) BMC Evolutionary Biology.

  • The 5km Hex GS Collapsible Deposits dataset shows a generalised view of the GeoSure Collapsible Deposits v7 dataset to a hexagonal grid resolution of 64.95km coverage area (side length of 5km). This dataset indicates areas of potential ground movement in a helpful and user-friendly format. The rating is based on a highest level of susceptibility identified within that Hex area: Low (1), Moderate (2), Significant (3). Areas of localised significant rating are also indicated. The summarising process via spatial statistics at this scale may lead to under or over estimation of the extent of a hazard. The supporting GeoSure reports can help inform planning decisions and indicate causes of subsidence. The reports can help inform planning decisions and indicate causes of subsidence. The Collapsible Ground dataset provides an assessment of the potential for a geological deposit to collapse (to subside rapidly) as a consequence of a metastable microfabric in loessic material. Such metastable material is prone to collapse when it is loaded (as by construction of a building, for example) and then saturated by water (as by rising groundwater, for example). Collapse may cause damage to overlying property. The methodology is based on the BGS Digital Map (DiGMapGB-50) and expert knowledge of the origin and behaviour of the formations so defined. It provides complete coverage of Great Britain, subject to revision in line with changes in DiGMapGB lithology codes and methodological improvements.

  • The 5km Hex GS Soluble Rocks dataset shows a generalised view of the GeoSure Soluble Rocks v7 dataset to a hexagonal grid resolution of 64.95km coverage area (side length of 5km). This dataset indicates areas of potential ground movement in a helpful and user-friendly format. The rating is based on a highest level of susceptibility identified within that Hex area: Low (1), Moderate (2), Significant (3). Areas of localised significant rating are also indicated. The summarising process via spatial statistics at this scale may lead to under or over estimation of the extent of a hazard. The supporting GeoSure reports can help inform planning decisions and indicate causes of subsidence. The Soluble Rocks methodology is based on the BGS Digital Map (DiGMapGB-50) and expert knowledge of the behaviour of the formations so defined. This dataset provides an assessment of the potential for dissolution within a geological deposit. Ground dissolution occurs when certain types of rock contain layers of material that may dissolve if they get wet. This can cause underground cavities to develop. These cavities reduce support to the ground above and can lead to a collapse of overlying rocks. Dissolution of soluble rocks produces landforms and features collectively known as 'karst'. Britain has four main types of soluble or 'karstic' rocks; limestone, chalk, gypsum and salt, each with a different character and associated potential hazards. Engineering problems associated with these karstic rocks include subsidence, sinkhole formation, uneven rock-head and reduced rock-mass strength. Sinkhole formation and subsidence has the potential to cause damage to buildings and infrastructure. Complete Great Britain national coverage is available.

  • The data were produced by Joe Emmings, NERC-funded PhD student at the University of Leicester and British Geological Survey, between 2014 and 2017. Authors of these data: Joe Emmings a, b; Sarah Davies a; Christopher Vane b; Melanie Leng b, c; Vicky Moss-Hayes b; Michael Stephenson b a School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester, LE1 7RH, UK. b British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK. c School of Biosciences, Centre for Environmental Geochemistry, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK. Data include: 1) A range of photographs from the outcrop Hind Clough and boreholes MHD4 and Cominco S9, sample photographs, thin section scans, microphotographs (transmitted light and scanning electron microscopy) and hand specimen descriptions; 2) The results of 100 analyses from the outcrop Hind Clough and boreholes MHD4 and Cominco S9; x-ray fluorescence major and trace element concentrations, RockEval pyrolysis measurements, x-ray diffraction traces and LECO elemental C and S data. These data were interpreted together with 20 drill-core samples previously acquired from Hind Clough ('HC01' prefix). See http://dx.doi.org/10.5285/c39a32b2-1a30-4426-8389-2fae21ec60ad for further information regarding this drill-core dataset. Acknowledgements: This study was funded by NERC grant NE/L002493/1, a part of the Central England Training Alliance (CENTA). This study also received CASE funding from the BGS. Nick Riley (Carboniferous Ltd) is thanked for sharing his expertise, particularly regarding the field identification of marine faunas. Charlotte Watts is thanked for providing field assistance. Nick Marsh, Tom Knott and Cheryl Haidon are thanked for providing expertise and assistance during inorganic geochemical and mineralogical analyses.

  • High precision electron-probe analysis of olivine compositions from a set of ocean island basalts. Accompanied by thin section scans and QEMSCAN (Quantitative Evaluation of Minerals by SCANning) compositional maps.

  • Microstructural data for rocks in the Shiant Isles Main Sill, presented as a function of stratigraphic height in the sill. The data were published: Holness et al. (2017) Contributions to Mineralogy and Petrology, 172:7. OI 10.1007/s00410-016-1325-x

  • Data produced from NERC Grant NE/M001156/1 - Fe speciation data (FeHR/FeT, and FePy/FeHR), collected following methods outlined in Izon et al., 2017, Proceedings of the National Academy of Sciences (PNAS); % Carbonate, determined gravimetrically; d34SV-CDT for sedimentary pyrite, analysed by Iso-Analytical Laboratories, Cheshire, using standard EA-IRMS techniques; d15N of bulk rock, analysed by nano-EA-IRMS, following methods described in Polissar et al., 2009, Analytical Chemistry; d15N of kerogen extracted following the methods described in Zerkle et al., 2017, Nature, analysed by nano-EA-IRMS; d13C of organic carbon, measured on decarbonated rock powders by standard EA-IRMS techniques; %TN and TON % determined by standard EA-IRMS of bulk rock and extracted kerogen, respectively. Drill core samples were taken through the 2.7Ga old Manjeri Formation of the Belingwe Greenstone belt, Zimbabwe, which overlies more ancient gneissic basement with very well-exposed unconformity (Bickle et al. 1975). The Manjeri Formation, typically 50-150m thick, exhibits a deepening succession of facies (Grassineau et al., 2002, Hunter et al., 1998). It is directly overlain by komatiitic basalts and komatiites of the Reliance Fm., dated at 2692±9 Ma (Pb-Pb whole rock; Chauvel et al., 1993). The metamorphic grade of the Manjeri succession is variable, but generally remarkably low (Abell et al. 1981). Three drill cores were taken in the Manjeri Formation. The NERCMAR drill core has been described in detail by Grassineau et al., 2002. Drill cores A and B were collected some km to the north, in the upper Manjeri Formation.