Creation year

2021

1230 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 1230
  • The dataset contains experimental data of the preparation of a photocatalytic membrane and its application in CO2 capture and utilization. The experiments were carried out in the Tang’s and Lan’s groups at the Department of Chemical Engineering, University College London during June-November 2020. Specifically, the data shows the preparation of cucurbit[6]uril and copper oxide which were empolyerd to prepare the photocatalytic membrane together with functional polymers. Preliminary results of the photocatalytic membrane for CO2 capture and utilization were also included. Funded by UKCCSRC 2020 Flexible Funding Call.

  • Free energy calculations of noble-gas containing liquid iron and silicate melts at 50 GPa (3500 K) and 135 GPa (4200 K). The chemical potentials of noble gases can be obtained from these calculations. The Gibbs free energy of a series of iron and silicate melts with different concentrations of He were calculated. Then the chemical potentials of He can be derived from the concentration dependent Gibbs free energies. The chemical potentials of Ne, Ar, Kr and Xe were calculated by using the alchemical free energy method, where one He was converted to Ne, Ar, Kr or Xe gradually.

  • This is a polygon .shp file of 12,838 Asia Summer Monsoon (ASM) - triggered landslides that occurred across a ~45,000 km2 region of central-eastern Nepal in the period 1988 - 2018. This inventory includes the landslide locations, perimeters (Length field), areas and pre-/post- monsoon season satellite image dates used to map each landslide. Note, landslides were not mapped in the years 2011 and 2012 due to scan line errors in Landsat 7 imagery. These landslides were mapped for a range of purposes, from conducting landslide susceptibility assessments, to investigating landslide processes and preconditioning.

  • The VOLCORE (Volcanic Core Records) database is a collection of 34,696 visible tephra (volcanic ash and lithological or grain size variations) occurrences reported in the initial reports volumes of all of the Deep Sea Drilling Project (DSDP; 1966–1983), the Ocean Drilling Program (ODP; 1983–2003), the Integrated Ocean Drilling Program (IODP; 2003–2013) and the International Ocean Discovery Program (IODP; 2013-present) up to and including IODP Expedition 381. The combined international ocean drilling programmes (OD) have locations with global coverage. Cored tephra layers and tephra-bearing sediments span timescales from recent to ~150 million years in age. This database is a collection of information about reported visible tephra layers entirely or predominantly composed of volcanic ash. Data include the depth below sea floor, tephra thickness, location, and any reported comments. An approximate age was estimated for most (29,493) of the tephra layers using published age-depth models. The database can be used as a starting point for studies of tephrochronology, volcanology, geochemistry, studies of sediment transport and palaeoclimatology.

  • This dataset is an overall sample list, as an Excel spreadsheet, providing details of the major sample suites collected during the SoS RARE project (2015-2017). It includes location details for samples collected in a range of localities worldwide. The samples are chiefly rocks and soils. Most material is still held by the institutions that did the work, as recorded in the sample list. The dataset also includes partial details of work that has been done on the samples. However time constraints have prevented complete update of the spreadsheet and so it is uploaded here to provide the best record possible of the available sample material.

  • This dataset comprises neodymium (Nd) and strontium (Sr) isotope compositions measured on 72 sediment samples, from IODP Expedition 374 Site U1521 to the Ross Sea. These were collected on the RV JOIDES Resolution. Shipboard biostratigraphy and magnetostratigraphy suggests the samples are mainly early Miocene in age (McKay et al., 2019). The uppermost samples do, however, include younger Plio-Pleistocene sediments. Neodymium and Sr isotope analyses were conducted using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) and a thermal ionisation mass spectrometer (TIMS), respectively, in the MAGIC laboratories at Imperial College London. Neodymium and Sr isotopes in sediments can be compared to measurements from terrestrial rock samples, allowing the changing provenance of the sediments to be traced. This dataset therefore provides information on how erosion by Antarctica’s ice sheets bordering the Ross Sea has changed over time. Neodymium isotopes are reported in the epsilon notation, which denotes the deviation in parts per 10,000 from the present-day composition of the Chondritic Uniform Reservoir (143Nd/144Nd = 0.512638) (Jacobsen and Wasserburg, 1980).

  • The dataset contains details of field collection of groundwater samples with use of different water intake devices and the measurement results of gaseous compounds (methane) obtained during analytical method validation performed in order to develop a methodology of groundwater sampling for analysis of dissolved gases. The dataset is not intended to be used for any site characterisation. Sampling sites were chosen based on high probability of occurrence of measureable methane content in groundwater. Furthermore, the data will be used for formal procedure to obtain the methodology accreditation from the Polish Centre for Accreditation (PCA). The dataset was created within SECURe project (Subsurface Evaluation of CCS and Unconventional Risks) - https://www.securegeoenergy.eu/. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 764531

  • This is a thin-sheet model of the regional geoelectric field covering the UK and Ireland, which is a combination of the response of the ground conductivity in a region with the spatial and temporal measurements of the rate of change of the horizontal components of the magnetic field. Output from the BGS Space Weather Impact on Ground-based Systems (SWIGS)

  • A dataset is presented for defining real-time CO2 frost formation in a vertical packed column. ECT could estimate the internal permittivity distribution of the sensing area through boundary measurements. The ECT system used in this work includes sensors, data acquisition system and a computer with imaging software. The excitation signal is a sine wave with 14 Vp-p and 200k Hz frequency. One measurement electrode is chosen for excitation; other electrodes are used to acquire the signal separately. The frame rate of the ECT system is 714 frames per second. The temperature of the bed material is recorded using thermocouples and data loggers, the thermocouples are inserted into the capture column from the top of the column and are adjusted to an appropriate height above the horizontal mixed gas injector. Using the thermocouples above and below the ECT sensor helped to estimate when frost formation would be occurring within the region of bed material that the ECT sensor was measuring. The presence of this plateau in the temperature profiles identifies that CO2 frost is forming within the bed and has reached an equilibrium. We include data of ECT capacitance and temperature during the whole progress. It was found that the temperature, packing material and component of mixer gas all effect the ECT measurement. This dataset could be used to withstand extreme low temperature conditions or in desublimation processes, and its potential application to decarbonise the marine transport is significant to avoid costs if using new infrastructure for ammonia or hydrogen manufacture. Our results indicate that ECT has potential to be a novel technique for monitoring dynamic CO2 frost formation during cryogenic carbon capture. The associated report is included in the data too.

  • Formation water geochemistry and gas geochemistry from 6 wells in the Olla Oil Field and 7 wells in the Nebo-Hemphill Oil Field Louisiana (Longitude range: -92.2297 to -92.1487, Latitude range: 31.83128 to 31.56586.), sampled in 2015. Formation water geochemistry for cation and anions and in mmol/l and ppm, these were measured at an internal ExxonMobil facility. Casing gases were used to make the remaining measurements. Stable noble gas isotopes (He, Ne, Ar, Kr, Xe) were measured at the University of Oxford Noble Lab for ratios and abundances (in cm3(STP)/cm3). Stable C isotopes of CO2 and CH4 and C2, C3 and C4 alkanes in ‰ VDPB as well as their mol% of the casing gas were measured by Isotech Inc.. Methane clumped isotopes are given as Δ12CH2D2 and Δ13CH3D and were measured at the California Institute of Technology. Where no data is present, no measurements were taken for that well. N.D. refers to not detectable.