Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
-
This poster on the UKCCSRC Call 1 project, Experimental investigation and CFD modelling of oxy-coal combustion, was presented at the Sheffield Biannual, 08.04.13. Grant number: UKCCSRC-C1-27.
-
This poster on the UKCCSRC Call 2 project, Quantifying Residual and Dissolution Trapping in the CO2CRC Otway Injection Site, was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C2-204.
-
This poster on the UKCCSRC Call 2 project, Investigating the radiative heat flux in small and large scale oxy-coal furnaces for CFD model development and system scale up, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-193.
-
This poster on the UKCCSRC Call 2 project, Advanced Sorbents for CCS via Controlled Sintering, was presented at the Cardiff Biannual_10.09.14. Grant number: UKCCSRC-C2-206.
-
This poster on the UKCCSRC Call 2 project Investigating the radiative heat flux in small and large scale oxy-coal furnaces for CFD model development and system scale up was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-193. Oxy-fuel (coal or biomass) combustion significantly changes the heat transfer properties of power plant furnaces. Thus future power plants using oxy-fuel technology will rely greatly on computational modelling. This project aims to collect combustion and heat transfer data from both small and large scale furnaces and to validate the computational model in order to make it ready for future technology scale up. Specific objectives are: • Take measurements at the 250 kW oxy-coal furnace at PACT national facilities in Sheffield, including combustion and heat transfer data. • Take measurements at a 35 MW oxy-coal furnace in China. • Validate CFD models developed and investigate the combustion and heat transfer properties in both large and small furnaces.
-
This poster on the UKCCSRC Call 1 project, Tractable Equation of State for CO2 Mixtures, was presented at the Cambridge Biannual, 02.04.14. Grant number: UKCCSRC-C1-22.
-
This poster on the UKCCSRC Call 2 project, Novel Materials and Reforming Processing Route for the Production of Ready-Separated CO2/N2/H2 from Natural Gas Feedstocks, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-181.
-
This poster on the UKCCSRC Call 2 project CO2 Flow Metering through Multi-Modal Sensing and Statistical Data Fusion was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-218. Measurement and monitoring of CO2 flows across the Carbon Capture and Storage (CCS) chain are essential to ensure accurate accounting of captured CO2 and help prevent leaking during transportation to storage sites. The significant changes in physical properties of CO2 depending on its state (gas, liquid, two-phase or supercritical) mean that CO2 flows in CCS pipelines are complex by their nature. Meanwhile, impurities in a CO2 pipeline also make the flow more likely in the form of two-phase mixture. Despite difficulties due to the changes in CO2 properties, there has been very little research into metering issues of CO2 flows. The aim of this project is to develop a cutting-edge technology for CO2 flows metering in CCS pipelines. The objectives are as follows: • To establish a mass reference platform for CO2 flowmeter calibration; • To develop a prototype multi-modal sensing system and data fusion algorithms for mass flow metering of CO2; • To evaluate the performance of the multi-modal sensing system under single-phase and two-phase CO2 flow conditions.
-
This poster on the UKCCSRC Call 1 project, Mixed Matrix Membrane Preparation for PCC, was presented at the Sheffield Biannual, 8.04.13. Grant number: UKCCSRC-C1-36.
-
This poster on the UKCCSRC Call 2 project, Process-performance indexed design of task-specific ionic liquids for post-combustion CO2 capture, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-199.