From 1 - 10 / 29
  • NERC grant NE/R013535/1. Here we present the dataset collected during a brine-CO2 flow-through test using a synthetic sandstone with oblique fractures, performed under realistic reservoir conditions stress. We monitored geophysical, mechanical and transport properties, for drainage and imbibition conditions, representative of the injection and post-injection stages of the CO2 storage process. We collected ultrasonic P- and S-wave velocities and their respective attenuation factors, axial and radial strains, electrical resistivity, pore pressure, temperature and brine and CO2 partial flows (from which relative permeability was later calculated).

  • The spreadsheet gathers the data collected during two experiments conducted on a synthetic sandstone core sample to assess geophysical monitoring techniques, storage capacity evaluation and the geomechanical integrity of shallow CO2 storage reservoirs. The tests were conducted in the rock physics laboratory at the National Oceanography Centre, Southampton, during 2016, as part of the DiSECCS project with funding from the United Kingdom's Engineering and Physical Sciences Research Council (EPSRC grant EP/K035878/1) and the Natural Environment Research Council (NERC). One experiment was a steady state brine-CO2 flow-through test (so called BTFT in the spreadsheet) to simultaneously evaluate storage capacity and identify pore fluid distribution and mechanical indicators during CO2 geosequestration. The confining and pore pressure conditions were similar to those estimated for shallow North Sea - like storage reservoirs, but simulating inflation/depletion cyclic scenarios for increasing brine:CO2 fractional flow rates. The second experiment focused on the assessment of geomechanical changes (the so called GAT in the spreadsheet) during and after CO2 storage activities under the same stress conditions. The data include ultrasonic P- and S-wave velocities and their respective attenuation factors and axial and radial strains in both tests, and electrical resistivity in the case of the flow-through test.

  • The spreadsheet gathers the data collected during a brine:CO2 flow-through experiment conducted on a synthetic sandstone core sample to present the capabilities of a novel 'multiflow experimental rig for CO2 experiments' designed and assembled at the National Oceanography Centre, Southampton. The test was configured to assess geophysical monitoring techniques in shallow tight (North Sea-like) CO2 storage sandstone reservoirs. The tests were conducted in the rock physics laboratory at the National Oceanography Centre, Southampton, during 2015, as part of the DiSECCS project with funding from the United Kingdom's Engineering and Physical Sciences Research Council (EPSRC grant EP/K035878/1) and the Natural Environment Research Council (NERC). The experiment was a steady state brine-CO2 flow-through test to replicate CO2 geosequestration conditions and evaluate geophysical monitoring techniques. The confining and pore pressure conditions were similar to those estimated for shallow North Sea - like storage reservoirs, but simulating inflation/depletion cyclic scenarios for increasing brine:CO2 fractional flow rates. The data include ultrasonic P- and S-wave velocities and their respective attenuation factors, axial strains, and electrical resistivity; also relative permeability to both fluids (CO2 and brine) is displayed as a function of pore volume times, associated to increasing CO2 to brine contents in the sample.

  • Dupont, Valerie (2017) Data associated with "Chemical equilibrium analysis of hydrogen production from shale gas using sorption enhanced chemical looping steam reforming" in Fuel Processing Technology. University of Leeds. Data file containing datasets used to generate the figures and tables in the paper. [Dataset] https://doi.org/10.5518/149. [Publication] http://doi.org/10.1016/j.fuproc.2017.01.026

  • The data is collected in North China Electric Power University (NCEPU) on a 1-inch bore, gas-liquid two-phase, high pressure (up to 72bar), ambient temperature CO2 flow test rig from 19th May to 3rd June 2016. Single phase gas and liquid information are provided by Coriolis meter and mixed together. Then a vertical Coriolis meter is used to measure the two-phase mixture together with a DP transmitter measuring differential pressure across the vertical Coriolis meter under test. UKCCSRC Call 2 project: CO2 Flow Metering through Multi-Modal Sensing and Statistical Data Fusion. Grant number: UKCCSRC-C2-218. Published papers: 1) Mass flow measurement of two-phase carbon dioxide using Coriolis flowmeters (https://doi.org/10.1109/I2MTC.2017.7969891). 2) Mass flow measurement of gas-liquid two-phase CO2 in CCS transportation pipelines using Coriolis flowmeters (https://doi.org/10.1016/j.ijggc.2017.11.021).

  • This Microsoft Excel document contains 8 worksheets providing data produced by research as part of EPSRC Grant #EP/K036033/1. These data are presented and discussed in the manuscript "The Inherent Tracer Fingerprint of Captured CO2." by Flude, S. Györe, D., Stuart, F.M., Zurakowska, M., Boyce, A.J., Haszeldine, S., Chalaturnyk, R., and Gilfillan, S. M. V. (Currently under review at IJGGC). Data include samples collected, gas concentrations, stable isotope data and noble gas data. This data relates to publication https://doi.org/10.1016/j.ijggc.2017.08.010.

  • This Microsoft Excel document contains 5 worksheets providing data produced by research as part of UKCCSRC Call 1 funded project (grant number UKCCSRC-C1-31) and UKCCSRC funded international exchange. These data are presented and discussed in the manuscript "Geochemical tracers for monitoring offshore CO2 stores" by J. Roberts, S. Gilfillan, L. Stalker, M. Naylor, https://doi.org/10.1016/j.ijggc.2017.07.021. Then data details the assumptions around background concentrations of chemical tracers in the atmosphere and seawater, cost per litre, and how tracer detection concentrations (and so cost and potential environmental impact were calculated).

  • The spreadsheet gathers the data collected during an experiment conducted on a Utsira Sand formation core sample to complements and constrains existing geophysical monitoring surveys at Sleipner and, more generally, improves the understanding of shallow weakly-cemented sand reservoirs. The tests were conducted in the rock physics laboratory at the National Oceanography Centre, Southampton, during 2016, as part of the DiSECCS project with funding from the United Kingdom’s Engineering and Physical Sciences Research Council (EPSRC grant EP/K035878/1) and the Natural Environment Research Council (NERC). The experiment was a steady state brine-CO2 flow-through test to simultaneously evaluate ultrasonic waves, electrical resistivity (converted into pore fluid distribution) and mechanical indicators during CO2 geosequestration in shallow weakly-cemented reservoirs. The confining and pore pressure conditions were similar to those estimated for Sleipner (North Sea – like storage reservoirs), but simulating inflation/depletion cyclic scenarios for increasing brine:CO2 fractional flow rates. The data include primary ultrasonic wave velocities and attenuation factors, axial and radial strains, and electrical resistivity. Also, we provide a velocity-saturation relationship of practical importance to CO2 plume monitoring, obtained from the inversion of ultrasonic velocity and attenuation data and extrapolation of results to field-scale seismic-frequencies using a new rock physics theory. The dataset is linked to this publication: http://www.sciencedirect.com/science/article/pii/S1750583617306370.

  • Data derived from UKCCSRC Call 2 Project C2-181. The journal article can be found at http://dx.doi.org/10.1016/j.fuel.2017.03.072. Sorption enhanced chemical looping steam reforming of methane (SE-CLSR) relies on the exothermicity of both a metal catalyst’s oxidation and the in situ CO2 capture by carbonation onto a solid sorbent to provide the heat demand of hydrogen (H2) production by steam reforming while generating a nearly pure H2 product. A brief thermodynamic analysis to study the main features of the SE-CLSR process is done prior to the reactor modelling work. Later, one dimensional mathematical model of SE-CLSR process in the packed bed configuration is developed using gPROMS model builder 4.1.0 under the adiabatic conditions. This model combines reduction of the NiO catalyst with the steam reforming reactions, followed by the oxidation of the Ni-based reduced catalyst. The individual models of NiO reduction, steam reforming with in situ CO2 capture on Ca-sorbent, and Ni re-oxidation are developed by using kinetic data available in literature and validated against previous published work. The model of SE-CLSR is then applied to simulate 10 alternative cycles of the fuel and air feed in the reactor. The performance of the model is studied in terms of CH4 conversion, CO2 capture efficiency, purity and yield of H2. The sensitivity of the process is studied under the various operating conditions of temperature, pressure, molar steam to carbon ratio (S/C) and mass flux of the gas phase. In this work, the operating conditions used for the production of H2 represent realistic industrial production conditions. The sensitivity analysis demonstrates that the developed model of SE-CLSR process has the flexibility to simulate a wide range of operating conditions of temperature, pressure, S/C and mass flux of the gas phase.

  • The spreadsheet gathers the data collected during a brine:CO2 flow-through experiment conducted on a weakly-cemented synthetic sandstone core sample using the multiflow experimental rig for CO2 experiments, designed and assembled at the National Oceanography Centre, Southampton. The test was configured to assess geophysical monitoring and deformation of reservoirs subjected to CO2 injection in shallow weakly-cemented (North Sea-like, e.g., Sleipner) CO2 storage sandstone reservoirs. The tests was conducted in the rock physics laboratory at the National Oceanography Centre, Southampton, during 2015-2016, as part of the DiSECCS project with funding from the United Kingdom’s Engineering and Physical Sciences Research Council (EPSRC grant EP/K035878/1) and the Natural Environment Research Council (NERC). The experiment was a steady state brine-CO2 flow-through test in which realistic shallow CO2 geosequestration conditions were simulated, to related geophysical signatures to the hydrodynamic and geomechanical behaviour of the rock sample. The confining and pore pressure conditions were similar to those estimated for shallow North Sea Sleipner-like, storage reservoirs, but simulating inflation/depletion cyclic scenarios for increasing brine:CO2 fractional flow rates. The data include ultrasonic P- and S-wave velocities and their respective attenuation factors, axial, radial and volumetric strains, and electrical resistivity; also relative permeability to both fluids (CO2 and brine) is displayed as a function of pore volume times, associated to increasing CO2 to brine contents in the sample.