From 1 - 10 / 195
  • The Soil Moisture CCI 'Passive' dataset is one of the three datasets created as part of the European Space Agency's (ESA) Soil Moisture Essential Climate Variable (ECV) CCI project. The product has been created by fusing radiometer soil moisture products, merging data from the SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2 and SMOS satellite instruments. 'Active' and 'Combined' products have also been created, the 'Active' product being a fusion of AMI-WS and ASCAT derived scatterometer products and the 'Combined Product' being a blended product based on the former two data sets. The v03.2 Passive product presents a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. The product is provided in volumetric units [m3 m-3] and covers the period (yyyy-mm-dd) 1978-11-01 to 2015-12-31. It consists of global daily images stored within yearly folders and are NetCDF-4 classic file formatted. For information regarding the theoretical and algorithmic base of the product, please see the Algorithm Theoretical Baseline Document. Other additional reference documents and information relating to the dataset can also be found on the CCI Soil Moisture project web site or within the Product Specification Document. The data set should be cited using all three of the following references: 1. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001 2. Gruber, A., Dorigo, W. A., Crow, W., Wagner W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. 10.1109/TGRS.2017.2734070 3. Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., de Jeu, R.A.M. , Wagner, W., McCabe, M.F., Evans, J.P., van Dijk, A.I.J.M. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, 280-297, doi: 10.1016/j.rse.2012.03.014

  • The Soil Moisture CCI 'Passive' dataset is one of the three datasets created as part of the European Space Agency's (ESA) Soil Moisture Essential Climate Variable (ECV) CCI project. The product has been created by fusing radiometer soil moisture products, merging data from the SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2 and SMOS satellite instruments. 'Active' and 'Combined' products have also been created, the 'Active' product being a fusion of AMI-WS and ASCAT derived scatterometer products and the 'Combined Product' being a blended product based on the former two data sets. The v03.3 Passive product presents a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. The product is provided in volumetric units [m3 m-3] and covers the period (yyyy-mm-dd) 1978-11-01 to 2016-12-31. It consists of global daily images stored within yearly folders and are NetCDF-4 classic file formatted. For information regarding the theoretical and algorithmic base of the product, please see the Algorithm Theoretical Baseline Document. Other additional reference documents and information relating to the dataset can also be found on the CCI Soil Moisture project web site or within the Product Specification Document. The data set should be cited using all three of the following references: 1. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001 2. Gruber, A., Dorigo, W. A., Crow, W., Wagner W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. 10.1109/TGRS.2017.2734070 3. Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., de Jeu, R.A.M. , Wagner, W., McCabe, M.F., Evans, J.P., van Dijk, A.I.J.M. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, 280-297, doi: 10.1016/j.rse.2012.03.014

  • The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains the Version 4.0 Remote Sensing Reflectance product on a sinusoidal projection at approximately 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites). Values for remote sensing reflectance at the sea surface are provided for the standard SeaWiFS wavelengths (412, 443, 490, 510, 555, 670nm) with pixel-by-pixel uncertainty estimates for each wavelength. These are merged products based on SeaWiFS, MERIS and Aqua-MODIS data. Note, these data are also contained within the 'All Products' dataset. This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection).

  • The ESA Fire Disturbance Climate Change Initiative (CCI) project has produced maps of global burned area derived from satellite observations. The Sentinel-3 SYN Fire_cci v1.0 grid product described here contains gridded data on global burned area derived from surface reflectance data from the OLCI and SLSTR instruments (combined as the Synergy (SYN) product) onboard the Sentinel-3 A&B satellites, complemented by VIIRS thermal information. This product, called FireCCIS310 for short, is currently available for 2019, but it is foreseen to be extended for additional years. This gridded dataset has been derived from the FireCCIS310 pixel product (also available) by summarising its burned area information into a regular grid covering the Earth at 0.25 x 0.25 degrees resolution and at monthly temporal resolution. Information on burned area is included in 22 individual quantities: sum of burned area, standard error, fraction of burnable area, fraction of observed area, and the burned area for 18 land cover classes, as defined by the Copernicus Climate Change Initiative(C3S) Land Cover v2.1.1 product. For further information on the product and its format see the Product User Guide in the linked documentation.

  • This dataset contains land surface temperatures (LSTs) and their uncertainty estimates from the Advanced Along-Track Scanning Radiometer (AATSR) on Environmental Satellite (Envisat). Satellite land surface temperatures are skin temperatures, which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. Daytime and night-time temperatures are provided in separate files corresponding to the morning and evening Envisat equator crossing times which are 10:00 and 22:00 local solar time. Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and solar geometry angles, a quality flag, and land cover class. The dataset coverage is global over the land surface. LSTs are provided on a global equal angle grid at a resolution of 0.01° longitude and 0.01° latitude. AATSR achieves full Earth coverage in 3 days so the daily files have gaps where the surface is not covered by the satellite swath on that day. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. Dataset coverage starts on 25th July 2002 and ends on 8th April 2012. There is a twelve day gap in the dataset due to Envisat mission extension orbital manoeuvres from 21st October 2010 to 1st November 2010. There are minor interruptions (1-2 days) during satellite/instrument maintenance periods. The dataset was produced by the University of Leicester (UoL) and LSTs were retrieved using the (UoL) LST retrieval algorithm and data were processed in the UoL processing chain. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.

  • This v2.1 SST_cci Level 4 Analysis Climate Data Record (CDR) provides a globally-complete daily analysis of sea surface temperature (SST) on a 0.05 degree regular latitude - longitude grid. It combines data from both the Advanced Very High Resolution Radiometer (AVHRR ) and Along Track Scanning Radiometer (ATSR) SST_cci Climate Data Records, using a data assimilation method to provide SSTs where there were no measurements. These data cover the period between 09/1981 and 12/2016. The dataset has been produced as part of the European Space Agency (ESA) Climate Change Initiative Sea Surface Temperature project(ESA SST_cci). The data products from SST_cci accurately map the surface temperature of the global oceans over the period 1981 to 2016 using observations from many satellites. The data provide independently quantified SSTs to a quality suitable for climate research. The CDR Version 2.1 product supercedes the CDR Version 2.0 product. Data are made freely and openly available under a Creative Commons License by Attribution (CC By 4.0) https://creativecommons.org/licenses/by/4.0/ When citing this dataset please also cite the associated data paper: Merchant, C.J., Embury, O., Bulgin, C.E., Block T., Corlett, G.K., Fiedler, E., Good, S.A., Mittaz, J., Rayner, N.A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., Donlon, C. Satellite-based time-series of sea-surface temperature since 1981 for climate applications, Scientific Data 6:223 (2019). http://doi.org/10.1038/s41597-019-0236-x

  • This dataset contains monthly-averaged land surface temperatures (LSTs) and their uncertainty estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Earth Observing System – Aqua (Aqua). Satellite land surface temperatures are skin temperatures which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. Daytime and night-time temperatures are provided in separate files corresponding to the daytime and night-time Aqua equator crossing times which are 13:30 and 01:30 local solar time. Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and solar geometry angles, a quality flag, and land cover class. The dataset coverage is global over the land surface. LSTs are provided on a global equal angle grid at a resolution of 0.01° longitude and 0.01° latitude. MODIS achieves full Earth coverage nearly twice per day so the daily files have small gaps primarily close to the equator where the surface is not covered by the satellite swath on that day. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. Dataset coverage starts on 4th July 2002 and ends on 31st December 2018. There are minor interruptions (1-2 days) during satellite/instrument maintenance periods. The dataset was produced by the University of Leicester (UoL) and LSTs were retrieved using a generalised split window retrieval algorithm and data were processed in the UoL processing chain. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.

  • The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises Level 3 daily and monthly gridded aerosol products from the ATSR-2 instrument on the ERS-2 satellite, derived using the ADV algorithm, version 2.31. It covers the period from 1995-2003. For further details about these data products please see the linked documentation.

  • The Soil Moisture CCI PASSIVE dataset is one of three datasets created as part of the European Space Agency's (ESA) Soil Moisture Essential Climate Variable (ECV) Climate Change Initiative (CCI) project. The product has been created by merging data from the SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2, SMOS, SMAP, FY-3B and GPM satellite instruments. ACTIVE and COMBINED products have also been created. The v06.1 PASSIVE product, provided as global daily images in NetCDF-4 classic file format, presents a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. It is provided in volumetric units [m3 m-3] and covers the period (yyyy-mm-dd) 1978-11-01 to 2020-12-31. For information regarding the theoretical and algorithmic base of the product, please see the Algorithm Theoretical Baseline Document. Additional reference documents and information relating to the dataset can also be found on the CCI Soil Moisture project website. The data set should be cited using the following references: 1. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019 2. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001

  • This dataset contains monthly-averaged land surface temperatures (LSTs) and their uncertainty estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Earth Observing System – Terra (Terra). Satellite land surface temperatures are skin temperatures which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. Daytime and night-time temperatures are provided in separate files corresponding to the morning and evening Terra equator crossing times which are 10:30 and 22:30 local solar time. Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and solar geometry angles, a quality flag, and land cover class. The dataset coverage is global over the land surface. LSTs are provided on a global equal angle grid at a resolution of 0.01° longitude and 0.01° latitude. MODIS achieves full Earth coverage nearly twice per day so the daily files have small gaps primarily close to the equator where the surface is not covered by the satellite swath on that day. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. The monthly dataset starts from March 2000 and ends December 2018. There are minor interruptions (1-2 days) during satellite/instrument maintenance periods. The dataset was produced by the University of Leicester (UoL) and LSTs were retrieved using a generalised split window retrieval algorithm and data were processed in the UoL processing chain. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.