Format

ESRI Shapefile

48 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
From 1 - 10 / 48
  • The Land Classification of Cumbria is a classification of the county of Cumbria (Great Britain) into a set of 16 environmental strata, termed land classes, to be used as a basis for ecological survey, originally developed by the Institute of Terrestrial Ecology (ITE) in 1975. The strata were created from the multivariate analysis of 150 environmental variables, including topographic data, geographical features and geology data. The Land Classification can be used to stratify a wide range of ecological and biogeographical surveys to improve the efficiency of collection, analysis and presentation of information derived from a sample. Full details about this dataset can be found at https://doi.org/10.5285/0ac6249c-a6f2-4147-8ae9-50d576e85fc5

  • This is a spatial dataset containing polygons representing different geology types in the Moor House National Nature Reserve, northern Pennines, England. The survey was undertaken by G.A.L. Johnson under a grant by The Nature Conservancy in the 1950s and 1960s. Full details about this dataset can be found at https://doi.org/10.5285/0e3aefb2-ce86-4d09-8ff0-6d165dfd48db

  • This dataset consists of the vector version of the Land Cover Map 2000 for Northern Ireland, containing individual parcels of land cover (the highest available resolution). Level 2 & Level 3 attributes are available. Level 2, the standard level of detail, provides 26 LCM2000 target or ('sub') classes. This is the most widely used version of the dataset. Level 3 gives higher class detail. However, the quality of this level of detail may vary in different areas of the country, requiring expert interpretation. The dataset is part of a series of data products produced by the Centre for Ecology & Hydrology known as LCM2000. LCM2000 is a parcel-based thematic classification of satellite image data covering the entire United Kingdom. LCM2000 is derived from a computer classification of satellite scenes obtained mainly from Landsat, IRS and SPOT sensors and also incorporates information derived from other ancillary datasets. LCM2000 was classified using a nomenclature corresponding to the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompasses the entire range of UK habitats. In addition, it recorded further detail where possible. The series of LCM2000 products includes vector and raster formats, with a number of different versions containing varying levels of detail and at different spatial resolutions. Full details about this dataset can be found at https://doi.org/10.5285/9f043047-d1c7-4852-b513-aa00204022a8

  • This is a spatial dataset containing polygons representing areas of vegetation mapped within the Moor House National Nature Reserve in the northern Pennines, England. The map was created by staff of The Nature Conservancy in the 1960s. Full details about this dataset can be found at https://doi.org/10.5285/bb703113-3428-483c-858a-2a85cafd9821

  • This dataset models bee nectar plant richness across Great Britain (GB). It uses counts of bee nectar plants (using a list agreed with experts) in Countryside Survey area vegetation plots in 2007 and extrapolates to 1km squares across GB using a generalised additive mixed model. Co-variables used in the model are Broad Habitat (the dominant broad habitat of the 1km square), air temperature, nitrogen deposition, precipitation and altitude. This data provides a metric of the Natural Capital associated with pollination, although to measure the service itself you would require additional datasets. Understanding the distribution of bee nectar plants does provide valuable information on the potential distribution of pollinators and hence pollination. Full details about this dataset can be found at https://doi.org/10.5285/623a38dd-66e8-42e2-b49f-65a15d63beb5

  • Radon is a natural radioactive gas, which enters buildings from the ground. The joint UK Health Security Agency (UKHSA) (formerly Public Health England (PHE) ) - British Geological Survey (BGS) digital Indicative Atlas of radon in Great Britain presents an overview of the results of detailed mapping of radon potential, defined as the estimated percentage of homes in an area above the radon Action Level. Exposure to high concentrations increases the risk of lung cancer. UKHSA (formerly PHE) recommends that radon levels should be reduced in homes where the annual average is at or above 200 becquerels per cubic metre (200 Bq m-3). This is termed the Action Level. UK Health Security Agency defines radon Affected Areas as those with 1% chance or more of a house having a radon concentration at or above the Action Level of 200 Bq m-3. The Indicative Atlas of radon in Great Britain presents a simplified version of the radon potential for Great Britain with each 1-km grid square being classed according to the highest radon potential found within it, so is indicative rather than definitive. The joint UKHSA-BGS digital radon potential for Great Britain provides the current definitive map of radon Affected Areas in Great Britain.

  • The newGeoSure Insurance Product (newGIP) provides the potential insurance risk due to natural ground movement. It incorporates the combined effects of the 6 GeoSure hazards on (low-rise) buildings: landslides, shrink-swell clays, soluble rocks, running sands, compressible ground and collapsible deposits. These hazards are evaluated using a series of processes including statistical analyses and expert elicitation techniques to create a derived product that can be used for insurance purposes such as identifying and estimating risk and susceptibility. The evaluated hazards are then linked to a postcode database - the Derived Postcode Database (DPD), which is updated biannually with new releases of Ordnance Survey Code-Point® data (current version used: 2022.3). The newGIP is provided for national coverage across Great Britain (not including the Isle of Man). This product is available in a range of GIS formats including Access (*.dbf), ArcGIS (*.shp) or MapInfo (*.tab) on request. The newGIP is produced for use at 1:50 000 scale providing 50 m ground resolution.

  • The BGS GeoCoast Dataset is a Geographic Information System (GIS)-based analysis for indicating multi-hazards and interdependencies within the coastal zone of Great Britain (not including Orkney and Shetland). GeoCoast represents the natural geological coastline (around the mainland of Great Britain) as if no coastal defences or made ground are present. This will be of particular value in areas where coastal defences are no longer maintained. GeoCoast will offer anyone with assets, or an interest in the coastline around Great Britain, access to easy-to-use datasets linked to geohazard data. This will allow users to interpret potential interdependencies in terms of erosion, flooding, habitat and other vulnerabilities. These datasets are divided into two data packages: Premium and Open datasets, which include the following information: The data is delivered in GIS ESRI point, polyline and polygon format (other formats available on request).

  • BGS GeoScour v2 provides river scour susceptibility information for Great Britain using a three-tiered data provision allowing increasing levels of understanding at different resolutions from catchment to local (channel/reach) scales. GeoScour v2 includes 18 GIS layers, providing information on the natural characteristics and properties of catchment and riverine environments for the assessment of river scour in Great Britain. The dataset product fills a gap in current scour modelling, with the input of geological properties. It provides an improved toolkit to more easily assess and raise the profile of scour risk, now and in the future, to help infrastructure providers and funders prioritise resources, identify remedial works to preclude costly and prevent disruptive failures. The product has broad applications through its adaptation to suit multiple types of asset susceptible to fluvial erosion. GeoScour looks specifically at the geological factors that influence scour and does not consider any hydraulic or hydrodynamic factors. The GeoScour Dataset Product is designed to be used by multiple stakeholders with differing needs and therefore, can be interrogated at a number of levels. Tier 1 A catchment stability dataset provides a summary overview of the catchment characteristics, typical response type, and evolution. It can be used as a high-level overview for incorporation into catchment management plans, national reviews and catchment comparisons using Tier 2 datasets are available as smaller catchment areas and focusses on providing data for more detailed catchment management, natural flood management and similar uses. It analyses geological properties such as flood accommodation space, catchment run-off potential, geomorphology types, and additional summary statistics for worst, average, and best-case scenarios for underlying surface geology scour susceptibility, as well as additional summary statistics of key environmental parameters such as protected sites and urban coverage. Tier 3 datasets provide the detailed riverine information that is designed to be incorporated into more complex river scour models. It provides the baseline geological context for river scour development and processes and identifies important factors that should be considered in any scour model. Factors such as material mineralogy, strength and density are key properties that can influence a river’s ability to scour. In addition, an assessment of river fall, sinuosity and flood accommodation space is also provided. This data is of use to those assessing the propensity for river scour for any given reach of a river across Great Britain and can be used as an input into hydraulic/hydrodynamic models. Tier 1 and 2 datasets are Open Government Licence (OGL), Tier 3 is licenced.

  • Mining hazard (not including coal) summarises the location, extent and indicates the level of hazard associated with former and present underground mine workings. The dataset covers Great Britain and is published at 1: 50 000 scale. The content is derived from a range of data sources including, but not limited to the bedrock geology, extensive literature reviews of both published and unpublished documents, abandonment and mine plans, combined with a wealth of expert knowledge and experience. The release of version 8 builds on the content of previously published versions. The coverage has been expanded with the inclusion of newly identified areas and drawing on data from the BGS published Britpits (BGS database of British Pits -includes both surface and underground mineral workings) and other resources. For the first time, zones of influence have been integrated (for evaporites, oil shales and building stones) to indicate the areas surrounding mining sites which might be impacted. The data have been compiled and presented in an easy to use format to provide a national overview of the country's mining legacy. Given the long and complex mining history of Great Britain, this dataset represents the best information available at the present time (September 2020). Work continues to develop this product, which will result in the release of ad hoc updates in the future.