Format

JPEG

50 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Resolution
From 1 - 10 / 50
  • Photos and videos collected during earthquake damage surveys of the village of Amatrice, central Italy. The earthquake struck on the 24th of August 2016 at 3:36 am local time, a Mw 6.2 earthquake struck a mountainous region of central Italy on the borders between Umbria, Marche, Lazio and Abruzzo. The Earthquake Engineering Field Investigation Team (EEFIT) mission ran from the 4th to the 15th of October 2016. The three main aspects investigated were the ground surface effects caused by the earthquake, the structural damage of masonry buildings and bridges and the effects of the earthquake on reinforced concrete structures and infrastructure.

  • [This nonGeographicDataset is embargoed until July 31, 2023]. The dataset consists of results of the electrochemical circle fit of the Nyquist plot generated by NOVA software to measure the Charge Transfer Resistance (RCT). Data demonstrates the curve of real and imaginary resistance against charges transmitted in the media of the carbon electrode biosensor. The change in RCT can detect the presence of the targeted antimicrobial resistance (AMR) DNA. The experiments were conducted by immersing the sensor's electrode in different concentrations of the target AMR DNA to determine the limit of detection. Full details about this nonGeographicDataset can be found at https://doi.org/10.5285/6bc69e2a-c771-4538-832e-2f6824b63474

  • Field photographs of rock formations or modern precipitates from the sedimentary environment. Samples were collected throughout the UK. This data was collected between February 2019 and November 2019. This data was collected to better understand the low temperature cycling of Telurium (Te) and Sellenium (Se) in the geological environment. For example, a range of ochre samples were included in this data. Ochres are a modern precipitate commonly found in rivers and streams which flow through geographical areas with a history of mining resources which are rich in sulphides. Iron from the sulphides are leached out and deposited downstream, coating river and stream beds, giving a red, yellow or orange colouration. Ochres can be a sink for trace metals such as Te and Se, therefore studying these environments could be informative from a resource perspective but also from an environmental hazard perspective. This data would be useful for researchers who require reference photographs for similar studies or as an aid for resampling.

  • These data comprise collection records of Heliconius butterfly samples collected in the Chocó-Darien ecoregion between the Andes and the Pacific in Ecuador and Colombia, and the Pacific coast of the Darien region of Panama. Samples were collected over five sampling trips between 2014 and 2016. Data were collected for a study of clinal variation across this region in Heliconius erato and Heliconius melpomene, so focus on these two species. However, in most cases all observed Heliconius species were collected. The dataset includes photographs of the wings of most of the specimens, which were used for an analysis of colour and pattern variation. Many of these individuals also have genomic information available for them on the European Nucleotide Archive (ENA) - the data includes ENA accession numbers. Data were collected as part of a NERC fellowship project (NE/K008498/1). Full details about this dataset can be found at https://doi.org/10.5285/cb23c552-caee-4221-bdd3-83b172139ae1

  • Data from laboratory experiments conducted as part of project NE/K011464/1 (associated with NE/K011626/1) Multiscale Impacts of Cyanobacterial Crusts on Landscape stability. Soils were collected from eastern Australia and transferred to a laboratory at Griffith University, Queensland for conduct of experiments. Soils were characterised before, during and after simulated rainfall to determine impact of rainfall on soil surface roughness and physical crusting. For two soils (#13 DL Clay_cyano; #14 DL sand_cyano) cyanobacterial crusts were grown on subsamples and these were used to compare the response of soils with, and without, cyanobacterial soil crusts to rainfall treatment. Rainfall intensity of 60 mm hr-1 was used and rainfall was applied for 2 minutes (achieving 2 mm application), 5 minutes (achieving 5 mm application), 2 minutes (achieving 2 mm application) at 24-hour intervals with soils dried at 35°C and 30% humidity between applications in a temperature/humidity-controlled room. Variables measured were soil texture, penetrometry, salinity, splash loss, infiltration, organic matter content, occurrence of ponding, three-dimensional topography. Details of rainfall simulator, growth of cyanobacteria (where soil #13 = Acbc, soil #14 = Bcbc) and all other methods can be found in Bullard et al. 2018, 2019. Bullard, J.E., Ockelford, A., Strong, C.L., Aubault, H. 2018. Impact of multi-day rainfall events onsurface roughness and physical crusting of very fine soils. Geoderma, 313, 181-192. doi: 10.1016/j.geoderma.2017.10.038. Bullard, J.E., Ockelford, A., Strong, C.L., Aubault, H. 2019. Effects of cyanobacterial soil crusts on surface roughness and splash erosion. Journal of Geophysical Research – Biogeosciences. doi: 10.1029/2018 tbc

  • This web map shows positive plant habitat condition indicators across Great Britain (GB). This data provides a metric of plant diversity weighted by the species that you would expect and desire to have in a particular habitat type so indicates habitat condition. In each Countryside Survey 2007 area vegetation plot the number of positive plant habitat indicators (taken from a list created from Common Standards Monitoring Guidance and consultation with the Botanical society of the British Isles (BSBI)) for the habitat type in which the plot is located are counted. This count is then divided by the possible indicators for that habitat type (and multiplied by 100) to get a percentage value. This is extrapolated to 1km squares across GB using a generalised additive mixed model. Co-variables used in the model are Broad Habitat (the dominant broad habitat of the 1km square), air temperature, nitrogen deposition, sulphur deposition, precipitation and whether the plot is located in a Site of Special Scientific Interest (SSSI) (presence or absence data).

  • This web map service shows the suitability of climate conditions for infection of Phytophthora ramorum and Phytophthora kernoviae across the UK. Suitability is mapped for individual years 2007 to 2011; the average and standard deviations for the whole period are also provided. The model is based on laboratory data of environmental responses of these pathogens and hourly temperature and relative humidity regimes in the period, and describes how many times infection could have been completed within running 48 hour periods through the year. This research was funded by the Scottish Government under research contract CR/2008/55, 'Study of the epidemiology of Phytophthora ramorum and Phytophthora kernoviae in managed gardens and heathlands in Scotland' and involved collaborators from St Andrews University, Science and Advice for Scottish Agriculture (SASA), Scottish Natural Heritage (SNH), Forestry Commission, the Food and Environment Research Agency (FERA) and the Centre for Ecology & Hydrology (CEH).

  • This service provides a view of Environmental Change Network (ECN) site locations from which data are collected. There are 12 terrestrial sites and 45 freshwater sites. Sites range from upland to lowland, moor land to chalk grassland, small ponds and streams to large rivers and lakes. ECN is the UK's long-term environmental monitoring programme. A wide range of integrated physical, chemical and biological variables which drive and respond to environmental change are collated, quality controlled and made freely available for scientific research. The data form an important evidence base for UK environmental policy development. ECN is a multi-agency programme sponsored by a consortium of fourteen government departments and agencies. These organisations contribute to the programme through funding either site monitoring and/or network co-ordination activities. These organisations are: Agri-Food and Biosciences Institute, Biotechnology and Biological Sciences Research Council, Cyfoeth Naturiol Cymru - Natural Resources Wales, Defence Science & Technology Laboratory, Department for Environment, Food and Rural Affairs, Environment Agency, Forestry Commission, Llywodraeth Cymru - Welsh Government, Natural England, Natural Environment Research Council, Northern Ireland Environment Agency, Scottish Environment Protection Agency, Scottish Government and Scottish Natural Heritage.

  • This web map service (WMS) depicts estimates of mean values of soil bacteria, invertebrates, carbon, nutrients and pH within selected habitats and parent material characteristics across GB . Estimates were made using CS data using a mixed model approach. The estimated means of habitat/parent material combinations using 2007 data are modelled on dominant habitat and parent material characteristics derived from the Land Cover Map 2007 and Parent Material Model 2009, respectively. Bacteria data is representative of 0 - 15 cm soil depth and includes bacterial community structure as assessed by ordination scores. Invertebrate data is representative of 0 - 8 cm soil depth and includes Total catch, Mite:Springtail ratio, Number of broad taxa and Shannon diversity. Gravimetric moisture content (%) data is representative of 0 - 15 cm soil depth Carbon data is representative of 0-15 cm soil depth and includes Loss-on-ignition (%), Carbon concentration (g kg-1) and Carbon density (t ha-1). Loss-on-ignition was determined by combustion of 10g dry soil at 375 deg C for 16 hours; carbon concentration was estimated by multiplying LOI by a factor of 0.55, and carbon density was estimated by combining carbon concentration with bulk density estimates. Nutrient data is representative of 0 - 15 cm soil depth and includes total nitrogen (N) concentration (%), C:N ratio and Olsen-Phosphorus (mg/kg). pH and bulk density (g cm-3) data is representative of 0 - 15 cm soil depth. Topsoil pH was measured using 10g of field moist soil with 25ml de-ionised water giving a ratio of soil to water of 1:2.5 by weight; bulk density was estimated by making detailed weight measurements throughout the soil processing procedure. Areas, such as urban and littoral rock, are not sampled by CS and therefore have no associated data. Also, in some circumstances sample sizes for particular habitat/parent material combinations were insufficient to estimate mean values.

  • This is a web map service (WMS) for the 10-metre Land Cover Map 2021. The map presents the and surface classified into 21 UKCEH land cover classes, based upon Biodiversity Action Plan broad habitats.