Format

MS Excel

249 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
From 1 - 10 / 249
  • The file contain groundwater level/depth (WL), Groundwater and Surface Water Quality data (EC (micro-siemens per centimetre or µS/cm), Temperature (°C) and pH) for 49 points under fortnightly monitoring relevant to Gro for GooD research project in Kwale County, Kenya. Blank - Data not available. Gro for GooD: Groundwater Risk Management for Growth and Development

  • This spreadsheet contains 21 oxygen isotope measurements for hematite and mixed hematite/goethite samples from the supergene profiles of the Spence and Cerro Colorado porphyry copper deposits in the Central Andes. Columns are also included which contain calculated isotopic values for weathering fluids which were present at the time of iron oxide formation. These data are presented and discussed in the G-cubed paper 'A rusty record of weathering and groundwater movement in the hyperarid Central Andes' (Shaw et al., 2021). Weathering fluid isotopic values are calculated using the published fractionation factors of Clayton & Epstein (1961), Yapp (1990) and Bao & Koch (1999). The authors have the most confidence in the fluid values obtained using the fractionation factor of Yapp (1990), for reasons outlined in the publication.

  • This dataset was acquired as part of a NERC-funded Doctoral Training Partnership (DTP) PhD Studentship at the University of Leicester and British Geological Survey between 2014-2018 [grant no. NE/L002493/1] (see also Emmings, 2018 unpublished PhD thesis). This research was conducted within the Central England NERC Training Alliance (CENTA) consortium. This dataset accompanies a manuscript titled "Late Palaeozoic Phytoplankton Blackout: A 100 Myr Record of Enhanced Primary Productivity". Co-authors and co-workers were: Joseph F. Emmings (University of Leicester, British Geological Survey); Sarah J. Davies (University of Leicester); Simon W. Poulton (University of Leeds); Michael H. Stephenson (British Geological Survey); Gawen R. T. Jenkin (University of Leicester); Christopher H. Vane (British Geological Survey); Melanie J. Leng (British Geological Survey, University of Nottingham) and Vicky Moss-Hayes (British Geological Survey). Nick Riley (Carboniferous Ltd) is thanked for sharing biostratigraphic expertise and assistance. Nick Marsh and Tom Knott are thanked for providing assistance during geochemical analyses. This dataset contains the following data (in Microsoft Excel format). 1) Fe species abundance data measured at the University of Leeds using the sequential extraction method of Poulton and Canfield (2005) and pyrite S extraction method of Canfield et al., (1986); 2) Total Fe, Si, Mn and Al major element concentrations (measured using x-ray fluorescence at the University of Leicester; XRF); 3) Total organic carbon (TOC) and inorganic C (MINC) data measured via Rock-Eval pyrolysis at the British Geological Survey; 4) Cu, Mo and U trace element concentration data (measured via XRF at the University of Leicester) and enrichment factors relative to Post-Archaean Average Shale (PAAS; Taylor and McLennan, 1985). Analyses were coupled on 99 sample powders from three positions in the Craven Basin and spanning ammonoid biozones P2c-d to E1c1. See also http://dx.doi.org/10.5285/9ceadcad-a93c-4bab-8ca1-07b0de2c5ed0 for additional sedimentological and geochemical data from Hind Clough, MHD4 and Cominco S9. These data were also interpreted together with 20 drill-core samples previously acquired from Hind Clough (‘HC01’ prefix). See http://dx.doi.org/10.5285/c39a32b2-1a30-4426-8389-2fae21ec60ad for further information regarding this drill-core dataset. References: Emmings, J. 2018. Controls on UK Lower Namurian Shale Gas Prospectivity: Understanding the Spatial and Temporal Distribution of Organic Matter in Siliciclastic Mudstones. Unpublished PhD Thesis. University of Leicester. Poulton, S. W. & Canfield, D. E. 2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology 214, 209-221, doi:http://dx.doi.org/10.1016/j.chemgeo.2004.09.003. Canfield D., Raiswell R., Westrich J., Reaves CM, Berner RA. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54(1): 149-155. Taylor S, McLennan S. 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific: London.

  • 120 samples of 57 tephra layers identified at IODP Expedition 350 sites (U1436 and U1437) were used in grain size analysis. Some layers have one grain size measurement, others have multiple measurements throughout the tephra layer.

  • This spreadsheet contains (U-Th-Sm)/He data for 73 hematite samples from the supergene profile of the Spence porphyry copper deposit in the Central Andes. These data are discussed in the G-cubed publication titled 'A rusty record of weathering and groundwater movement in the hyperarid Central Andes' (Shaw et al., 2021). Spence porphyry copper deposit Drill hole SPD0324, UTM WGS1984 19S, E 474975.22, N 7481100.39 Drill hole SPD 1848, UTM WGS1984 19S, E 474998.29, N 7481399.87 Drill hole SPD 0402, UTM WGS1984 19S, E 473969.87, N 7479755.01

  • Zeta potential measurements of rare earth element enriched apatite from Jacupiranga, Brazil under water and collector conditions. Zeta potential measurements can be used to indicate the surface behaviour of a mineral under different reagent conditions. Mineral surface behaviour is important in processing and extracting minerals from their host ore, which can be energy intensive. Apatite is a phosphate mineral which can become enriched with rare earth elements. Rare earth elements are important in a wide range of products from iPhones to wind turbines.

  • Groundwater level and groundwater temperature data measured in 9 boreholes between August 2012 and August 2018. Groundwater conductivity data measured in 1 of these boreholes from September 2012 to August 2014. Eight of the boreholes are drilled into a sandur (glacial outwash floodplain) aquifer in front of Virkisjokull glacier, SE Iceland, and are between 8.2 and 14.9 m deep. The remaining borehole is drilled into a volcanic rock aquifer between the sandur and glacier and is 5.1 m deep. Selected groundwater monitoring data are reported in Ó Dochartaigh, B. É., et al. 2019. Groundwater?- glacier?meltwater interaction in proglacial aquifers, Hydrol. Earth Syst. Sci. https://doi.org/10.5194/hess-2019-120. Further information on borehole installations and geology can be found in Ó Dochartaigh et al. 2012. Groundwater investigations at Virkisjokull, Iceland: data report 2012. British Geological Survey Open Report OR/12/088, http://nora.nerc.ac.uk/id/eprint/500570/

  • The tables describe U-series chronology of speleothems in Ledyanaya Lenskaya and Botovskaya caves used in the manuscript "Paleoclimate evidence of vulnerable permafrost during times of low sea ice" by Vaks et al. 2020, Nature 577, 7789, 221–225. The information included in the tables is listed as following: Table 1: Table 1a includes U–Pb data from Ledyanaya Lenskaya and Botovskaya caves; Table 1b includes common Pb estimates for Ledyanaya Lenskaya and Botovskaya caves. Table 2: U–Th chronology of speleothems from Botovskaya Cave. The data shows when speleothems were growing in Ledyanaya Lenskaya Cave during the last 1.5 Ma and in Botovskaya Cave during the last 0.7 Ma. Speleothems grow when water seeps from the surface into the caves. If the soil and rock above the cave is permanently frozen, water will not reach the cave and speleothems will not grow. Together with the data from Vaks et al (2013) "Speleothems Reveal 500,000-Year History of Siberian Permafrost", Science 340, 6129, p 183–186, these speleothem deposition periods show when the permafrost above the two caves was discontinuous or absent. Published Paper: Vaks, A., Mason, A. J. Breitenbach, S. F. M., Kononov, A. M., Osinzev, A. V., Rosensaft, M., Borshevsky, A., Gutareva, O. S., Henderson, G. M. Palaeoclimate evidence of vulnerable permafrost during times of low sea ice. Nature 577, 7789, 221–225 (2020) doi:10.1038/s41586-019-1880-1

  • The dataset has been published open-access in Ilyinskaya et al. (2017), Earth and Planetary Science Letters, 472, 309-322 https://doi.org/10.1016/j.epsl.2017.05.025 This study quantifies the air quality impact of Holuhraun eruption 2014-2015 on populated areas in Iceland. Specifically we trace the evolution of the plume chemistry from the eruption site to 2 key areas of population: Reykjahlid, which is the nearest municipality to Holuhraun at 100 km distance, and Reykjavik capital area, which hosts ~60% of Iceland's population, 250 km distance. This dataset is the full chemical analysis of filter pack samples of volcanic gas and aerosol, including trace species (e.g. heavy metals).

  • Whole rock geochemical data from the Alpine Fault Zone. These data have been generated from systematic sampling through the Deep Fault Drilling Project - Phase 1 rock cores and from analyses of cuttings retrieved during the Deep Fault Drilling Project - Phase 2. Geochemical analyses on the fault rocks to understand the conditions at which they were deformed. The dataset is associated with the UK component of a major international campaign, the Deep Fault Drilling Project (DFDP). to drill a series of holes into the Alpine Fault, New Zealand. The overarching aim of the DFDP to understand better the processes that lead to major earthquakes by taking cores and observing a major continental fault during its build up to a large seismic event.