Format

Shapefile

55 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
From 1 - 10 / 55
  • This dataset is a model output from the European Monitoring and Evaluation Programme (EMEP) model applied to the UK (EMEP4UK) driven by Weather and Research Forecast model meteorology (WRF). It provides annual averages of vegetation specific atmospheric deposition of oxidised sulphur, oxidised nitrogen, and reduced nitrogen on a 1x1 km2 grid for the year 2018. The EMEP4UK model version used here is rv4.36, and the WRF model version is the 4.1.1. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability. Full details about this dataset can be found at https://doi.org/10.5285/2adc10bf-e6f4-4e8d-b268-ee5d58d31c50

  • This dataset is the 2012 revised Corine Land Cover (CLC) map, consisting of 44 classes in the hierarchical three level Corine nomenclature, produced during the CLC2018 production to improve the CLC2012 inventory. CLC 2018, CLC change 2012-2018 and CLC 2012 revised are three of the datasets produced within the frame of the Copernicus programme on land monitoring. Corine Land Cover (CLC) provides consistent information on land cover and land cover changes across Europe; these two maps are the UK component of Europe. This inventory was initiated in 1985 (reference year 1990) and established a time series of land cover information with updates in 2000, 2006 and 2012 being the last iteration. CLC products are based on photointerpretation of satellite images by national teams of participating countries – the EEA member and cooperating countries – following a standard methodology and nomenclature with the following base parameters: 44 classes in the hierarchical three level Corine nomenclature; minimum mapping unit (MMU) of status layers is 25 hectares; minimum width of linear elements is 100 metres; minimum mapping unit (MMU) for Land Cover Changes (LCC) for the change layers is 5 hectares. The resulting national land cover inventories are further integrated into a seamless land cover map of Europe. Land cover and land use (LCLU) information is important not only for land change research, but also more broadly for the monitoring of environmental change, policy support, the creation of environmental indicators and reporting. CLC datasets provide important datasets supporting the implementation of key priority areas of the Environment Action Programmes of the European Union as protecting ecosystems, halting the loss of biological diversity, tracking the impacts of climate change, assessing developments in agriculture and implementing the EU Water Framework Directive, among others. More information about the Corine Land Cover (CLC) and Copernicus land monitoring data in general can be found at http://land.copernicus.eu/. Full details about this dataset can be found at https://doi.org/10.5285/9bb7caab-764d-407b-9a81-0d758722d900

  • This dataset records the Saiga antelope die-off and calving sites in Kazakhstan. It represents the locations (and where available dates) of (i) die-offs and (ii) normal calving events in the Betpak-dala population of the saiga antelope, in which three major mass mortality events have been recorded since 1988. In total, the data contains 214 saiga die-off and calving sites obtained from field visits, aerial surveys, telemetry and literature. Locations derived from field data, aerial surveys or telemetry are polygons representing the actual size and shape of the die-off or calving sites; locations sourced from the literature are point data around which buffers of 6km were created, representing the average size of calving aggregations. Of the 214 locations listed, 135 sites for which environmental data were available were used to model the probability of a die-off event. The collection and use of these data are written up in more detail in papers which are currently under review (when published links will be added to this record). Saiga antelope are susceptible to mass mortality events, the most severe of which tend to be caused by haemorrhagic septicaemia following infection by the bacteria Pasteurella multocida. These die-off events tend to occur in May during calving, when saigas gather in dense aggregations which can be represented spatially as relatively small sites. The Betpak-dala population is one of three in Kazakhstan, located in the central provinces of the country (see map). Full details about this dataset can be found at https://doi.org/10.5285/8ad12782-e939-4834-830a-c89e503a298b

  • Estimates of annual volumes of manure produced by six broad farm livestock types for England and Wales at 10 km resolution, modelled with MANURES-GIS [1]. The farm livestock classes are: dairy cattle; beef cattle; pigs; sheep and other livestock; laying hens; broilers and other poultry. The quantities produced by each type are subsequently apportioned into managed and field-deposited manure. The managed manure sources are categorised as beef farmyard manure, beef slurry, dairy farmyard manure, dairy slurry, broiler litter, layer manure, pig farmyard manure, pig slurry and sheep farmyard manure. The destinations are recorded as grass, winter arable, spring arable and direct excreta when grazing. For each 10 km square, the quantity of manure going from each source to each destination is estimated. The values specify amount of excreta, in kilograms for solid manure and in litres for liquid manure. [1] ADAS (2008) The National Inventory and Map of Livestock Manure Loadings to Agricultural Land: MANURES-GIS. Final Report for Defra Project WQ0103 Full details about this dataset can be found at https://doi.org/10.5285/517717f7-d044-42cf-a332-a257e0e80b5c

  • This dataset consists of the vector version of the Land Cover Map 2000 for Great Britain, containing individual parcels of land cover (the highest available resolution). Level 2 & Level 3 attributes are available. Level 2, the standard level of detail, provides 26 LCM2000 target or ('sub') classes. This is the most widely used version of the dataset. Level 3 gives higher class detail. However, the quality of this level of detail may vary in different areas of the country, requiring expert interpretation. The dataset is part of a series of data products produced by the Centre for Ecology & Hydrology known as LCM2000. LCM2000 is a parcel-based thematic classification of satellite image data covering the entire United Kingdom. The map updates and upgrades the Land Cover Map of Great Britain (LCMGB) 1990. Like the earlier 1990 products, LCM2000 is derived from a computer classification of satellite scenes obtained mainly from Landsat, IRS and SPOT sensors and also incorporates information derived from other ancillary datasets. LCM2000 was classified using a nomenclature corresponding to the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompasses the entire range of UK habitats. In addition, it recorded further detail where possible. The series of LCM2000 products includes vector and raster formats, with a number of different versions containing varying levels of detail and at different spatial resolutions. Full details about this dataset can be found at https://doi.org/10.5285/b79e887e-a2a7-4224-8fd7-e78066b950b3

  • These spatial layers contain risk factors and overall risk scores, representing relative risk of Phytophthora infection (Phytophthora ramorum and P. kernoviae), for heathland fragments across Scotland. Risk factors include climate suitability, proximity to road and river networks and suitability of habitat for key hosts of Phytophthora and were broadly concurrent with the period between 2007 and 2013. This research was funded by the Scottish Government under research contract CR/2008/55, 'Study of the epidemiology of Phytophthora ramorum and Phytophthora kernoviae in managed gardens and heathlands in Scotland' and involved collaborators from St Andrews University, Science and Advice for Scottish Agriculture (SASA), Scottish Natural Heritage (SNH), Forestry Commission, the Food and Environment Research Agency (FERA) and the Centre for Ecology & Hydrology (CEH). Full details about this dataset can be found at https://doi.org/10.5285/8f09b7e6-6daa-4823-b338-4edad8de1461

  • This dataset is the Corine Land Cover (CLC) change map between 2012 and 2018, consisting of 44 classes in the hierarchical three level Corine nomenclature. The Corine land cover changes between 2012 and 2018 for the UK, Isle of Man, Jersey and Guernsey dataset forms part of the Corine Land Cover Maps collection and is produced within the frame of the Copernicus programme on land monitoring. Corine Land Cover (CLC) provides consistent information on land cover and land cover changes across Europe; this change map is the UK component of the European coverage. This inventory was initiated in 1985 (reference year 1990) and established a time series of land cover information with updates in 2000, 2006 and 2012 being the last iteration. CLC products are based on photointerpretation of satellite images by national teams of participating countries – the EEA member and cooperating countries – following a standard methodology and nomenclature with the following base parameters: 44 classes in the hierarchical three level Corine nomenclature; minimum mapping unit (MMU) of status layers is 25 hectares; minimum width of linear elements is 100 metres; minimum mapping unit (MMU) for Land Cover Changes (LCC) for the change layers is 5 hectares. The resulting national land cover inventories are further integrated into a seamless land cover map of Europe. Land cover and land use (LCLU) information is important not only for land change research, but also more broadly for the monitoring of environmental change, policy support, the creation of environmental indicators and reporting. CLC datasets provide important datasets supporting the implementation of key priority areas of the Environment Action Programmes of the European Union as protecting ecosystems, halting the loss of biological diversity, tracking the impacts of climate change, assessing developments in agriculture and implementing the EU Water Framework Directive, among others. More information about the Corine Land Cover (CLC) and Copernicus land monitoring data in general can be found at http://land.copernicus.eu/. Full details about this dataset can be found at https://doi.org/10.5285/027b6432-f44d-41ab-b349-89fae673d5f5

  • These spatial layers contain the predicted occurrence and abundance of three heathland shrubs, Arctostaphylos uva-ursi, Vaccinium myrtillus and Vaccinium vitis-idaea identified as susceptible host species for Phytophthora ramorum and Phytophthora kernoviae in Scotland. The distribution models were developed from quadrat vegetation data kindly provided by Scottish Natural Heritage combined with data on climate and soil conditions as well as deer abundance and were fitted using a Bayesian Generalised Mixed Modelling approach adapted for input data on the DOMIN scale. This research was funded by the Scottish Government under research contract CR/2008/55, 'Study of the epidemiology of Phytophthora ramorum and Phytophthora kernoviae in managed gardens and heathlands in Scotland' and involved collaborators from St Andrews University, Science and Advice for Scottish Agriculture (SASA), Scottish Natural Heritage (SNH), Forestry Commission, the Food and Environment Research Agency (FERA) and the Centre for Ecology & Hydrology (CEH). Full details about this dataset can be found at https://doi.org/10.5285/5749df3d-000c-445e-a37f-dc0763b4d5ec

  • This dataset contains polylines depicting non-woodland linear tree and shrub features in Cornwall and much of Devon, derived from lidar data collected by the Tellus South West project. Data from a lidar (light detection and ranging) survey of South West England was used with existing open source GIS datasets to map non-woodland linear features consisting of woody vegetation. The output dataset is the product of several steps of filtering and masking the lidar data using GIS landscape feature datasets available from the Tellus South West project (digital terrain model (DTM) and digital surface model (DSM)), the Ordnance Survey (OS VectorMap District and OpenMap Local, to remove buildings) and the Forestry Commission (Forestry Commission National Forest Inventory Great Britain 2015, to remove woodland parcels). The dataset was tiled as 20 x 20 km shapefiles, coded by the bottom-left 10 km hectad name. Ground-truthing suggests an accuracy of 73.2% for hedgerow height classes. Full details about this dataset can be found at https://doi.org/10.5285/4b5680d9-fdbc-40c0-96a1-4c022185303f

  • This dataset includes polygons representing ecosystem types (ET) and their respective ecosystem services (ES) and disservices (EDS) in the Luanhe River Basin, with attributes recording 14 ecosystem types (ET), 11 provisioning services (PS), ten regulating services (RS), five cultural services (CS), 7 Ecological integrity indicators (EI), and 11 ecosystem disservices (EDS). Full details about this dataset can be found at https://doi.org/10.5285/2252d8a4-0ef3-403f-b2c3-3f7acbcac1d5