From 1 - 5 / 5
  • The ESA funded GlobSnow project produced snow water equivalent (SWE) monthly estimates for the Northern Hemisphere for the years 1979-2013. SWE describes the amount of liquid water in the snow pack that would be formed if the snow pack was completely melted. The monthly aggregate, a single product for each month, is calculated by determining the mean and the maximum of the weekly SWE samples. The SWE product shall cover the Northern Hemisphere, excluding the mountainous areas, Greenland, the glaciers and snow on ice (lakes/seas/oceans). The spatial resolution of the product is 25 km on EASE-grid projection. Construction of the 30 years historical data set will be carried out using SMMR, SSM/I and SSMI/S data along with ground-based weather station data. The data are utilized for the different years as follows: 1979/09/11 - 1987/10/30 SMMR (Scanning Multichannel Microwave Radiometer onboard Nimbus-7 satellite) 1987/11/01 - 2008/12/31 SSM/I (Special Sensor Microwave/Imager onboard the DMSP satellite series F8/F11/F13) 2009/01/01 - present SSM/I(S) (Special Sensor Microwave/Imager (Sounder) onboard the DMSP satellite series F17/F18/) These data may be redistributed and used without restriction.

  • The ESA funded GlobSnow project produced snow water equivalent (SWE) monthly estimates for the Northern Hemisphere for the years 1979-2013. SWE describes the amount of liquid water in the snow pack that would be formed if the snow pack was completely melted. The monthly aggregate, a single product for each month, is calculated by determining the mean and the maximum of the weekly SWE samples. This dataset presents the monthly maximum value of SWE only. The SWE product shall cover the Northern Hemisphere, excluding the mountainous areas, Greenland, the glaciers and snow on ice (lakes/seas/oceans). The spatial resolution of the product is 25 km on EASE-grid projection. Construction of the 30 years historical data set will be carried out using SMMR, SSM/I and SSMI/S data along with ground-based weather station data. The data are utilized for the different years as follows: 1979/09/11 - 1987/10/30 SMMR (Scanning Multichannel Microwave Radiometer onboard Nimbus-7 satellite) 1987/11/01 - 2008/12/31 SSM/I (Special Sensor Microwave/Imager onboard the DMSP satellite series F8/F11/F13) 2009/01/01 - present SSM/I(S) (Special Sensor Microwave/Imager (Sounder) onboard the DMSP satellite series F17/F18/) These data may be redistributed and used without restriction.

  • The ESA funded GlobSnow project produced snow water equivalent (SWE) 7-day estimates for the Northern Hemisphere for the years 1979-2013. SWE describes the amount of liquid water in the snow pack that would be formed if the snow pack was completely melted. Weekly Aggregated Snow Water Equivalent (Weekly L3B SWE) were calculated for each day based on a 7-day sliding time window aggregation of the daily SWE product. The SWE product shall cover the Northern Hemisphere, excluding the mountainous areas, Greenland, the glaciers and snow on ice (lakes/seas/oceans) The spatial resolution of the product is 25 km on EASE-grid projection. Construction of the 30 years historical data set will be carried out using SMMR, SSM/I and SSMI/S data along with ground-based weather station data. The data are utilized for the different years as follows: 1979/09/11 - 1987/10/30 SMMR (Scanning Multichannel Microwave Radiometer onboard Nimbus-7 satellite) 1987/11/01 - 2008/12/31 SSM/I (Special Sensor Microwave/Imager onboard the DMSP satellite series F8/F11/F13) 2009/01/01 - present SSM/I(S) (Special Sensor Microwave/Imager onboard the DMSP satellite series F17/F18/) These data may be redistributed and used without restriction.

  • The ESA funded GlobSnow project produced snow water equivalent (SWE) daily standard errors (Variance estimates) for the Northern Hemisphere for the years 1979-2013. SWE describes the amount of liquid water in the snow pack that would be formed if the snow pack was completely melted. The SWE product shall cover the Northern Hemisphere, excluding the mountainous areas, Greenland, the glaciers and snow on ice (lakes/seas/oceans). The spatial resolution of the product is 25 km on EASE-grid projection. Construction of the 30 years historical data set will be carried out using SMMR, SSM/I and SSMI/S data along with ground-based weather station data. The data are utilized for the different years as follows: 1979/09/11 - 1987/10/30 SMMR (Scanning Multichannel Microwave Radiometer onboard Nimbus-7 satellite) 1987/11/01 - 2008/12/31 SSM/I (Special Sensor Microwave/Imager onboard the DMSP satellite series F8/F11/F13) 2009/01/01 - present SSM/I(S) (Special Sensor Microwave/Imager (Sounder) onboard the DMSP satellite series F17/F18/) These data may be redistributed and used without restriction.

  • The ESA funded GlobSnow project produced snow water equivalent (SWE) 7-day estimates and standard errors for the Northern Hemisphere for the years 1979-2013. SWE describes the amount of liquid water in the snow pack that would be formed if the snow pack was completely melted. Weekly Aggregated Snow Water Equivalent (Weekly L3B SWE) were calculated for each day based on a 7-day sliding time window aggregation of the daily SWE product. The SWE product shall cover the Northern Hemisphere, excluding the mountainous areas, Greenland, the glaciers and snow on ice (lakes/seas/oceans) The spatial resolution of the product is 25 km on EASE-grid projection. Construction of the 30 years historical data set will be carried out using SMMR, SSM/I and SSMI/S data along with ground-based weather station data. The data are utilized for the different years as follows: 1979/09/11 - 1987/10/30 SMMR (Scanning Multichannel Microwave Radiometer onboard Nimbus-7 satellite) 1987/11/01 - 2008/12/31 SSM/I (Special Sensor Microwave/Imager onboard the DMSP satellite series F8/F11/F13) 2009/01/01 - present SSM/I(S) (Special Sensor Microwave/Imager (Sounder) onboard the DMSP satellite series F17/F18/) These data may be redistributed and used without restriction.