From 1 - 10 / 65
  • In this study, two strategies, thermal pretreatment and chemical doping, were investigated as a method of improving the residual carrying capacity of Longcliffe and Havelock limestone for calcium looping systems. Four parameters were varied during thermal pretreatment: temperature (900-1100 degrees C), time (3-12 hr), gas composition (0-100 % CO2 balanced in N2) and particle size (90-355 micrometre). After pre-calcination, the sorbents were subjected to 20 carbonation-calcination cycles performed in a thermographic analyser (TGA) to monitor any signs of sorbent improvement. The degradation of sorbent activity was modelled using the decay equation suggested by Grasa and Abanades (2006). Both Longcliffe and Havelock samples showed self-reactivation when pretreated under CO2, however this did not result in a greater carrying capacity after 20 carbonation/calcination cycles compared to the untreated limestone. For chemical doping, Longcliffe doped using 0.167 mol % HBr via quantitative wet impregnation method resulted in an increase in residual carrying capacity of 27.4 % after thermal pre-treatment under CO2 when compared to the untreated but doped limestone, assuming self-reactivation continued as modelled. When Longcliffe was doped and then pretreated under pure N2, the limestone showed self-reactivation, which was not seen in the undoped sorbent when also pretreated under N2. Thus, the success of pretreatment may be dependent on the chemical composition of the limestone. Finally, BET surface area and BJH pore volume analysis was used to understand the changes in the sorbents' morphologies. The closure of the mesopores (dpore<150 nm) after the pretreatment was correlated to the self-reactivation in the subsequent cycles.

  • UKCCSRC Grant EP/P026214/1. The UKCCSRC Summer Web Series ran from 21st July to 3rd September 2020 relating to various aspects of carbon capture and storage. For more information see https://ukccsrc.ac.uk/web-series/ukccsrc-summer-web-series/.

  • Technical report, component of ‘Progressing Scotland’s CO2 storage opportunities’ 2010. Carbon Capture, Transport and Storage is a very active field of research, especially for the past decade. From the UK perspective, a commercially crucial aspect is the saline aquifer research, since there are predicted to be vast storage capacities in the sedimentary formations of the North Sea. The report reviews the ongoing work on practical injections of CO2 as research tests for storage projects and specifically focuses on industrial sized saline aquifer injections. Available for download at http://hdl.handle.net/1842/15681.

  • The data consists of a poster presented at the UKCCSRC biannual meeting in Cardiff, September 10-11th 2014. The poster describes work carried-out on behalf of the 'Fault seal controls on CO2 storage capacity in aquifers' project funded by the UKCCS Research Centre, grant number UKCCSRC-C1-14. Shallow gas accumulations in the Netherlands sector of the Southern North Sea provide an opportunity to study their coincidence with faulting. Although difficult to attribute the occurrence of shallow gas to leakage of thermogenic fluids from depth (indeed shallow-sourced biogenic gas is common in the North Sea), evidence suggests a relationship, and the common attributes of the faults provide indications of the conditions under which faults in the region may leak, providing a useful indications of factors that should be avoided during CO2 storage operations.

  • This report describes the results of Task 5.1 in SACS2 Work Area 5 (Geophysics). The aim of the Task is to evaluate the applicability of microgravity surveys as a means of monitoring the future subsurface distribution and migration of the Sleipner CO2 bubble. The report can be downloaded from http://nora.nerc.ac.uk/511457/.

  • Revised full proposal for scientific drilling (852-CPP2) 'GlaciStore: Understanding Pleistocene glaciation and basin processes and their impact on fluid migration pathways (North Sea)', submitted to Integrated Ocean Discovery Programme (IODP) April 2016. The proponent 'GlaciStore' consortium comprises research and industry organisations from the UK, Norway, USA and Canada. The full proposal describes the relationship of the proposed research with the IODP science plan, sets the regional background and describes and illustrates three scientific objectives. The objectives are to: establish a high-resolution depositional and chronological framework defining multiple cycles of glacial advance and retreat over the last 2.6 Ma by investigating the strata preserved in the centre of the NSB by scientific drilling, sampling and detailed analysis; investigate how the temporal variations in depositional environment and geochemistry of the different stratigraphic units have affected the pore fluids (dissolved gases, salts and isotopes) and the microbial community; determine the measurable impact on geomechanical properties of strata (porosity, rock stiffness, in-situ stresses, pore pressure, fractures) caused by cycles of glacial loading and unloading. The drilling and sampling strategy, standard drilling and logging operations and the specialist measurements expected to be taken are described. Related initiatives and wider context of the proposed research also the initial and planned strategy for support from industry and government are outlined. The lead submitter, on behalf to the GlaciStore consortium is Heather Stewart, British Geological Survey (BGS).The 32 proponents from the UK and Norway (BGS, Institute for Energy Technology, Lundin Norway AS, Memorial University of Newfoundland, SINTEF Energy Research, Statoil ASA, University of Bergen, University of Edinburgh University of Oslo, University of Texas at Austin and University of Ottowa) and their expertise are listed and detailed. Site forms for each of the 13 proposed drilling sites are included.The full proposal is a pdf format file. This is restricted to the proponents for publication and to progress to a revised full proposal accepted for drilling by IODP. UKCCSRC Grant UKCCSRC-C1-30.

  • Technical report from CO2MultiStore project, component of ‘Optimising CO2 storage in geological formations: a case study offshore Scotland, September 2015. The report captures knowledge gained from the process, progress and findings of the research that is applicable to the development of any multi-user storage resource. Available for download at http://hdl.handle.net/1842/16475.

  • Revised full proposal cover sheet for scientific drilling (852-CPP2) 'GlaciStore: Understanding Pleistocene glaciation and basin processes and their impact on fluid migration pathways (North Sea)', submitted to Integrated Ocean Discovery Programme (IODP) April 2016. The full proposal cover sheet document is publicly available from IODP; the submitted full proposal document is restricted to the proponents for publication and for review and response from IODP. The proposal is a revision of full proposal 852-CPP in response to review by IODP. The lead submitter, on behalf to the GlaciStore consortium is Heather Stewart, British Geological Survey (BGS).The 32 proponents are from research and industry organisations in the UK, Norway, USA and Canada (BGS, Institute for Energy Technology, Lundin Norway AS, Memorial University of Newfoundland, SINTEF Energy Research, Statoil ASA, University of Bergen, University of Edinburgh, University of Oslo and University of Ottawa University of Texas at Austin). The revised full proposal cover sheet states the names of proponents of the 'GlaciStore' consortium and details for the lead submitter of the bid. The full proposal cover sheet comprises: an abstract of the submitted full proposal including description of project funding support as a Complementary Project Proposal: describes and states the scientific research objectives; summarises proposed non-standard measurements; tabulates details of the 13 proposed drill sites (revised from full proposal CPP-852) to address the scientific objectives. The objectives are to investigate: glacial history and sedimentary architecture; fluid flow and microbial processes in shallow sediments; and the stress history and geomechanical models for strata that have experienced multiple glacial and interglacial cycles. The table of revised proposed drilling sites includes designation of primary or alternate sites, the co-ordinates of the position and water depth at each proposed site, the objective for drilling and sampling and the depth to achieve the objective. The proponents, their affiliation, expertise and role for the submission are listed. UKCCSRC Grant UKCCSRC-C1-30.

  • This data contains the output from the first Flexible CCS Network Development (FleCCSnet) workshop of stakeholders discussing the development of CO2 networks in the UK. The first was held on the 30 April 2014 at the University of Edinburgh, UK. The purpose of Workshop 1 was to identify and confirm the key questions to be considered in order to understand the most likely impacts of variability in the CO2 sources and variability in CO2 sinks on CO2 transport system design and operation. There were a total of 21 attendees including 7 representatives from PSE, Scottish Power, BP, SCCS, Parsons Brinckerhoff, Element Energy, and AMEC. The dataset consists of two reports. The first report, 'Developing CO2 networks: Key lessons learnt from the first Flexible CCS Network Development (FleCCSnet) project workshop', summarises the workshop findings, which have been used to create a series of scenarios that were investigated by transient simulation. The scenarios developed are described in the second report, 'Developing CO2 networks: Scenarios building on the first Flexible CCS Network Development (FleCCSnet) project workshop'.

  • This report forms part of the international SACS (Saline Aquifer CO2 Storage) project. The project aims to monitor and predict the behaviour of injected CO2 in the Utsira Sand reservoir at the Sleipner field in the northern North Sea, to assess the regional storage potential of the Utsira reservoir, and to simulate and model likely chemical interactions of CO2 with the host rock. This is the final report of Work Area 1 in SACS, whose aims were to provide a full geological characterisation of the Utsira Sand and its caprock. The report summarises the key findings of the component subtasks of Work Area 1. The report also provides references to the various SACS Technical Reports wherein the full details of the scientific work can be found. The report can be downloaded from http://nora.nerc.ac.uk/511461/.