Aluminium
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
-
The dataset contains concentrations of Total Organic Carbon, Chloride, Fluoride, Bromine, Sulfate, Potassium, Aluminium, Calcium, Iron, Magnesium, Sodium, Phosphorus, Chromium, Manganese, Cobalt, Nickel, Copper, Zinc, Arsenic, Selenium, Molybdenum, Cadmium, Lead and stable water isotopes (δD and δ18O) for 25 groundwater and surface water sampling locations, surveyed over the period February 2017 to May 2018 immediately following Dineo floods. The data were collected as part of the PULA project, which aimed at understanding the immediate effect of heavy rainfall and floods on water resources in arid Botswana and their transitional hydrologic readjustment towards the dry period, and the role of these events in supporting either or both resources replenishment and contamination. The project was co-ordinated by the University of Aberdeen, with partners at the Botswana International University of Science and Technology, the Government of Botswana Department of Water Affairs, and the International Water Management Institute. The project was funded by the Natural Environment Research Council as part of its Urgency grants scheme. Full details about this dataset can be found at https://doi.org/10.5285/c7793128-1961-45d5-aa18-5f023116784b
-
This dataset contains nitrogen data from nitrate, ammonium and nitrite, total nitrogen and carbon data, and elemental composition data from anaerobic digestate and biomass ash from UK bioenergy production. Anaerobic digestate was sampled 8 times from different industrial scale plants across the UK between January 2015 and January 2018 and biomass ash was sampled in January 2015 and June 2016. Anaerobic digestate was sourced from segregated food waste (mainly household waste), pig slurry, maize silage, vegetables waste, sweet corn waste, aerobically treated food waste, food manufacturer waste and other biodegradable sludge from within the UK. Biomass ash, both fly and bottom ash, from virgin and recycled wood was sourced from three sites within the UK and one from Spain. All laboratory analyses were undertaken at Lancaster University using standardised methods. The data were collected as part of the research grant, Developing a suite of novel land conditioners and plant fertilizers from the waste streams of biomass energy generation. The research was funded by NERC, award NE/L014122/1. Full details about this dataset can be found at https://doi.org/10.5285/990c54f6-5c92-4054-8bfa-953533a89149
-
Discrete data for trace elements for both the dissolved and acid available fractions for thirteen core sites in the Humber catchment over the period 1993 to 1997 and for three sites from the Tweed catchment over the period 1994 to 1997. Part of the Land Ocean Interaction Study project (LOIS). Trace elements measured were: Aluminium (Al), Antimony (Sb), Arsenic (As), Barium (Ba), Beryllium (Be), Boron (B), Cadmium (Cd), Cerium (Ce), Chromium (Cr), Cobalt (Co), Copper (Cu), Gadolinium (Gd), Iron (Fe), Lanthanum (La), Lead (Pb), Lithium (Li), Manganese (Mn), Molybdenum (Mo), Neodymium (Nd), Nickel (Ni), Rubidium (Rb), Samarium (Sm), Scandium (Sc), Strontium (Sr), Tin (Sn), Uranium (U), Yttrium (Y), Zinc (Zn). The Core sites were sampled at regular weekly intervals and more intermittently during high flows (on average an extra sampling once a month per site). The Swale sites were sampled during hydrological events and the Aire sites were sampled both weekly and during hydrological events. The majority of samples were obtained using a wide neck grab sampler. Those samples collected from the Aire during hydrological events were obtained using EPIC automatic samplers. Both dissolved and acid available trace element fractions were determined for all samples. The dissolved fraction was measured by filtering samples and acidifying the filtrates with concentrated aristar grade nitric acid (1%vv) on the same day of sampling. The acid available fraction was determined by acidifying an unfiltered sample as above and agitating for 24 hours, at room temperature, prior to filtration. Samples were then analysed by inductively coupled plasma optical emission spectrometry (ICP-OES: B, Ba, Fe, Mn, Sr) and mass spectrometry (ICP-MS: Al, As, Be, Cd, Ce, Co, Cr, Cu, Gd, La, Li, Mo, Nd, Ni, Pb, Rb, Sb, Sc, Sm, Sn, U, Y, Zn). Full details about this dataset can be found at https://doi.org/10.5285/69f62656-567c-42dd-bb65-8f0cbbeb1693
-
Trace metal mobilisation data (pH, ALK, Na, K, Ca, Mg, Li, SO4, Si, Be, Mn, Fe, Zn, Cu, Al,Sr, Be, Ba, Y,Co, Ni, B, Rb, Y, Cd, Sb, Cs, Ba, La, Ce, Nd, Pb, Th, U) for the River Carnon, the River Fal (downstream) and its estuary in Cornwall following discharge of highly polluted water from the Wheal Jane mine. In January 1992, there was a major pollution incident involving highly acidic wastes. CEH, in conjunction with the University of Reading monitored the River Carnon between September 1992 and April 1994, to examine the water quality.