From 1 - 10 / 85
  • The Cloud_cci MODIS-Aqua dataset was generated within the Cloud_cci project (http://www.esa-cloud-cci.org) which was funded by the European Space Agency (ESA) as part of the ESA Climate Change Initiative (CCI) programme (Contract No.: 4000109870/13/I-NB). This dataset is one of the 6 datasets generated in Cloud_cci; all of them being based on passive-imager satellite measurements. This dataset is based on MODIS (onboard Aqua) measurements and contains a variety of cloud properties which were derived employing the Community Cloud retrieval for Climate (CC4CL) retrieval system. The core cloud properties contained in the Cloud_cci MODIS-Aqua dataset are cloud mask/fraction, cloud phase, cloud top pressure/height/temperature, cloud optical thickness, cloud effective radius and cloud liquid/ice water path. Spectral cloud albedo is also included as experimental product. Level-3C product files contain monthly averages and histograms of the mentioned cloud properties together with propagated uncertainty measures.

  • The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains all their Version 4.2 generated ocean colour products on a geographic projection at 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites). Data are also available as monthly climatologies. Data products being produced include: phytoplankton chlorophyll-a concentration; remote-sensing reflectance at six wavelengths; total absorption and backscattering coefficients; phytoplankton absorption coefficient and absorption coefficients for dissolved and detrital material; and the diffuse attenuation coefficient for downwelling irradiance for light of wavelength 490nm. Information on uncertainties is also provided. This data product is on a geographic grid projection, which is a direct conversion of latitude and longitude coordinates to a rectangular grid, typically a fixed multiplier of 360x180. The netCDF files follow the CF convention for this projection with a resolution of 8640x4320. (A separate dataset is also available for data on a sinusoidal projection.)

  • This data set is part of the ESA Sea Ice Climate Change Initiative (CCI) project. The dataset provides sea ice concentration for the Antarctic region, derived from the AMSR-E satellite instrument. It consists of daily gridded SIC fields based on Passive Microwave Radiometer measurements from the AMSR-E instrument with a 25km grid spacing, along with the total standard error (uncertainty) and quality control flags. It has been built upon the algorithms and processing software originally developed at the EUMETSAT OSI SAF for their SIC dataset. Please note, in the sea ice concentration data set - on purpose - no weather filter has been applied to eliminate weather-induced spurious ice in the open ocean along the ice edge in order to avoid discarding regions with a real sea ice cover. Users are advised to read the product user guide and the publication by Ivanova et al. [2015] (see documentation section). A second sea ice dataset has also been produced from the SSM/I instrument, and these should be regarded as individual datasets and not combined without further investigations about the compatibility. The project team warns potential users that the AMSR-E SIC time-series is less mature than the SSM/I one, and that the former should be used with extra care, possibly after visual inspection or comparison to other data sources (such as the SSM/I time series during the overlap period)

  • Cloud properties derived from the MODIS instrument on NASA's Aqua satellite by the ESA Cloud CCI project. The L3U datasets consists of cloud properties from L2 data granules remapped to a global space grid of 0.1 degree in latitiude and longitude, without combining any observations from overlapping orbits; only sampling is done. Common notations for this processing level are also L2b and L2G. Data is provided with a temporal resolution of 1 day. This dataset is version 1.0 data from Phase 1 of the CCI project.

  • The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains a monthly climatology of the generated ocean colour products. Data products being produced include: phytoplankton chlorophyll-a concentration; remote-sensing reflectance at six wavelengths; total absorption and backscattering coefficients; phytoplankton absorption coefficient and absorption coefficients for dissolved and detrital material; and the diffuse attenuation coefficient for downwelling irradiance for light of wavelength 490nm. Information on uncertainties is also provided.

  • The ESA Ocean Colour CCI project has produced global, level 3, binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains a monthly climatology of the generated ocean colour products covering the period 1997 - 2020. Data products being produced include: phytoplankton chlorophyll-a concentration; remote-sensing reflectance at six wavelengths; total absorption and backscattering coefficients; phytoplankton absorption coefficient and absorption coefficients for dissolved and detrital material; and the diffuse attenuation coefficient for downwelling irradiance for light of wavelength 490nm. Information on uncertainties is also provided.

  • The ESA Ocean Colour CCI project has produced global, level 3, binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains their Version 5.0 inherent optical properties (IOP) product (in mg/m3) on a geographic projection at approximately 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites) covering the period 1997 - 2020. Note, the IOP data is also included in the 'All Products' dataset. The inherent optical properties (IOP) dataset consists of the total absorption and particle backscattering coefficients, and, additionally, the fraction of detrital & dissolved organic matter absorption and phytoplankton absorption. The total absorption (units m-1), the total backscattering (m-1), the absorption by detrital and coloured dissolved organic matter, the backscattering by particulate matter, and the absorption by phytoplankton share the same spatial resolution of ~4 km. The values of IOP are reported for the standard SeaWiFS wavelengths (412, 443, 490, 510, 555, 670nm). This data product is on a geographic grid projection, which is a direct conversion of latitude and longitude coordinates to a rectangular grid, typically a fixed multiplier of 360x180. The netCDF files follow the CF convention for this projection with a resolution of 8640x4320. (A separate dataset is also available for data on a sinusoidal projection.)

  • The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains their Version 4.2 inherent optical properties (IOP) product (in mg/m3) on a sinusoidal projection at approximately 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites). Note, the IOP data are also included in the 'All Products' dataset. The inherent optical properties (IOP) dataset consists of the total absorption and particle backscattering coefficients, and, additionally, the fraction of detrital & dissolved organic matter absorption and phytoplankton absorption. The total absorption (units m-1), the total backscattering (m-1), the absorption by detrital and coloured dissolved organic matter, the backscattering by particulate matter, and the absorption by phytoplankton share the same spatial resolution of ~4 km. The values of IOP are reported for the standard SeaWiFS wavelengths (412, 443, 490, 510, 555, 670nm). This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection.)

  • The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains the Version 4.2 Remote Sensing Reflectance product on a sinusoidal projection at approximately 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites). Values for remote sensing reflectance at the sea surface are provided for the standard SeaWiFS wavelengths (412, 443, 490, 510, 555, 670nm) with pixel-by-pixel uncertainty estimates for each wavelength. These are merged products based on SeaWiFS, MERIS and Aqua-MODIS data. Note, these data are also contained within the 'All Products' dataset. This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection).

  • Cloud properties derived from the MODIS instrument on NASA's Aqua satellite by the ESA Cloud CCI project. The L3C dataset consists of data combined (averaged) from a single instrument into a global space-time grid, with a spatial resolution of 0.5 degrees lat/lon and a temporal resolution of 1 month. This dataset is version 1.0 data from Phase 1 of the CCI project.