From 1 - 10 / 13
  • Analyses of volcanic glasses from a range of oceanic islands (Samoa, Cook-Australs, Iceland) and mid-ocean ridges (Reykjanes Ridge). Each glass sample was analysed for the concentrations of >60 elements, using a combination of electron probe microanalysis (EPMA), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and secondary ion microprobe (SIMS) analysis. Detailed analytical techniques that were used to produce the data are presented in Wieser et al. (2020) and Reekie et al. (2019).

  • Vanadium and Zinc isotopic compositions of powdered basalt samples from the active volcanic zones of Iceland. These samples have been extensively characterised for other geochemical quantities in a series of papers (Marshall et al, 2022, Barry et al., 2014; Caracciolo, 2021; Caracciolo et al., 2020; Füri et al., 2010; Halldórsson et al., 2016a, 2016b; Macpherson et al., 2005; Rasmussen et al., 2020).

  • Neodymium (Nd) concentrations, Nd radiogenic isotopes (143Nd/144Nd) and Nd stable isotopes (d146/144Nd) for chondritic meteorites, terrestrial basalts and mantle rocks, and rock reference materials.

  • Major and trace element data for olivine- and plagioclase-hosted silicate melt inclusions, their host minerals, and associated matrix glasses, from Midfell, Snaefellsjokull and Oraefajokull, Iceland. Melt inclusion compositions are provided as measured, and corrected for post-entrapment crystallization. Reflected light images of the melt inclusions.

  • lectron probe analyses of the composition of plagioclase macocrysts from the 2021 eruption of the Fagradalsfjall eruption in Iceland. These were collected in profiles from rim-to-core and were designed for diffusion chronometry applications. This will be published in a article (in press in late 2022) in the journal Geology and with lead author Kahl. Analyses of a secondary standard across the many days of analytical sessions are also provided.

  • The data are magnesium (Mg) isotope composition, i.e. the relative difference of isotope ratios as defined in Coplen (2011, doi: 10.1002/rcm.5129). The reference was DSM-3 (see Galy et al., 2003, doi: 10.1039/b309273a) and data are given in per mil. Samples consisted of terrestrial peridotites and basalts as well as a suite of meteorites including chondrites, shergottites, diogenites and one angrite. A large portion of the data have been published in Hin et al. (2017, doi: 10.1038/nature23899).

  • High precision electron-probe analysis of olivine compositions from a set of ocean island basalts. Accompanied by thin section scans and QEMSCAN (Quantitative Evaluation of Minerals by SCANning) compositional maps.

  • We provide here Pb isotope data for the basement rocks cored during IODP Expedition 352 (Bonin Forearc). The data are reported as 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios together with their errors. The overall accuracy of the data was determined using international standard NBS SRM 981. Values for this standard achieved during the measurement period were 206Pb/204Pb = 16.9404 ±32,207Pb/204Pb = 15.4969 ±32, 208Pb/204Pb = 36.7149 ±90 (2sd; n=44). The data are separated into four parts one for each drill site that cored basement. Sites 1440B and 1441A both sampled a basalt type known as FAB (Forearc Basalts), whereas Sites 1439C and 1442A both sampled boninites (Mg-rich andesites). Both rock types are typical of the forearc setting and contain information needed to understand the process of subduction initiation. A summary of the Expedition, and hence the petrography and setting of the samples as well as the various scientific objectives for the project to which these analyses contribute) may be found in: Reagan, M.K., Pearce, J.A., and Petronotis, K., Expedition Scientists, 2015, Izu-Bonin-Mariana Fore Arc: Proceedings of the International Ocean Discovery Program, 352. International Ocean Discovery Program, http://dx.doi.org/10.14379/iodp.proc.352.2015.

  • This dataset contains raw (clean but not interpreted) triaxial compressive strength data of tests conductive at elevated pressure and temperature as outlined in "Vannucchi, P., Clarke, A., de Montserrat, A., Ougier-Simonin, A., Aldega, L., & Morgan, J. P. (2022). A strength inversion origin for non-volcanic tremor. Nature Communications, 13(1), 2311. https://doi.org/10.1038/s41467-022-29944-8". The data is provided in a .zip folder containing the files of 5 experiments that are accompanied by a README file for introduction. Files format is Microsoft Excel Worksheet (.xlsx) and data are tabulated. Each file contains the corresponding relevant sample’s details, and each column of data is clearly labelled, units included. For each experiment, time, axial force, axial displacement, axial stress, confining displacement, confining pressure, axial strain A and B, axial average strain, circumferential extensometer, circumferential strain, volumetric strain, internal temperature, and axial delta P were recorded. Triaxial testing was undertaken using the MTS 815 servo-controlled stiff frame inside a vessel capable of a confining pressure up to 140 MPa at the Rock Mechanics and Physics Laboratory, British Geological Survey, UK. The confining cell is fitted with external heater bands and utilizing utilizes cascade control from internal and external thermocouples (accurate to ± 0.5°C). An initial axial pre-load of 2.3 kN was applied, to ensure a stable contact and alignment of the platens. The confining pressure vessel was then closed and filled with mineral oil confining fluid. The axial pre-load was maintained whilst the confining pressure was applied at 2 MPa/min to 60 or 120 MPa; these values were chosen to approximately bracket the pressures at the up-dip limit of seismic nucleation, corresponding to 2 – 4 km depth (Arroyo et al., 2014). At this point, whilst held in axial force and confining pressure control, the rig was heated at 2°C/min to 60°C to approximate the average temperature conditions at the depth of the up-dip limit of seismic nucleation (Harris and Spinelli, 2010). The samples were then left for approximately 1 hour allowing thermal equilibrium to be reached throughout the confining fluid and the samples. Once stable, axial loading was initiated in constant axial strain rate control at a rate of 5.0 x 10-6 s-1 until macroscopic failure occurred or a significant amount of post peak-stress axial strain was recorded (between 2% and 5%). We note that one test was conducted at the higher temperature of T=120°C with a result within 2.5% of the strength at T=60°C (Table 1). As this is below the expected sample-to-sample variability, no further temperature studies were conducted. The axial load, axial load actuator displacement, axial stress (s1), differential stress (Q=s1 - s3), confining pressure Pc (= s2= s3), confining pressure actuator displacement, axial strain (eax), circumferential strain (ecirc) and temperature were monitored throughout at sampling frequencies of 1s and 0.5kN. File names are: YYYY-MM-DD_LabProjectNumber_SiteName-SampleNumber

  • The data was generated from a range of laboratory experiments where a range of silicate rocks (granite, basalt, peridotite) were crushed in oxygen-free conditions, deoxygenated water added, and the generation of hydrogen gas and hydrogen peroxide followed over a week. Results were compared to rock-free controls. The data was collected to provide insight into the production of oxidants (such as hydrogen peroxide) along tectonically active regions of the subsurface, and how the oxidants might influence subsurface microbiology.