Keyword

CCI

445 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 445
  • This dataset contains monthly-averaged land surface temperatures (LSTs) and their uncertainty estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Earth Observing System – Aqua (Aqua). Satellite land surface temperatures are skin temperatures which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. Daytime and night-time temperatures are provided in separate files corresponding to the daytime and night-time Aqua equator crossing times which are 13:30 and 01:30 local solar time. Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and solar geometry angles, a quality flag, and land cover class. The dataset coverage is global over the land surface. LSTs are provided on a global equal angle grid at a resolution of 0.01° longitude and 0.01° latitude. MODIS achieves full Earth coverage nearly twice per day so the daily files have small gaps primarily close to the equator where the surface is not covered by the satellite swath on that day. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. Dataset coverage starts on 4th July 2002 and ends on 31st December 2018. There are minor interruptions (1-2 days) during satellite/instrument maintenance periods. The dataset was produced by the University of Leicester (UoL) and LSTs were retrieved using a generalised split window retrieval algorithm and data were processed in the UoL processing chain. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.

  • This dataset consists of daily total column water vapour (TCWV) over land, at a 0.05 degree resolution, observed by various satellite instruments. It has been produced by the European Space Agency Water Vapour Climate Change Initiative (Water_Vapour_cci), and forms part of their TCVW over land Climate Data Record -1 (TCWV-land (CDR-1). This version of the data is v3.1.

  • This dataset consists of monthly averaged total column water vapour (TCWV) over land, at a 0.5 degree resolution, observed by various satellite instruments. It has been produced by the European Space Agency Water Vapour Climate Change Initiative (Water_Vapour_cci), and forms part of their TCVW over land Climate Data Record -1 (TCWV-land (CDR-1). This version of the data is v3.2. This is an updated dataset, which fixes an issue with the filtering of the v3.1 data.

  • This dataset provides a version of the Cloud_cci AVHRR-PMv3 monthly gridded dataset in Obs4MIPs format. The Cloud_cci AVHRR-PMv3 dataset (covering 1982-2016) was generated within the Cloud_cci project, which was funded by the European Space Agency (ESA) as part of the ESA Climate Change Initiative (CCI) programme (Contract No.: 4000109870/13/I-NB). This dataset is based on intercalibrated measurements from the Advanced Very High Resolution Radiometer (AVHRR) sensors on-board the NOAA prime afternoon (PM) satellite NOAA-7,-9,11,-14,-16,-18,-19 satellites. It contains a multi-annual, global dataset of cloud and radiation properties which were derived employing the Community Cloud retrieval for Climate (CC4CL) retrieval framework. This particular Obs4MIPS product has been generated for inclusion in Obs4MIPs (Observations for Model Intercomparisons Project), which is an activity to make observational products more accessible for climate model intercomparisons. Individual files are provided covering seven cloud variables: Cloud area fraction in atmospheric layer (clCCI); Atmospheric cloud ice content (clivi); Cloud area fraction (cltCCI); Liquid water cloud area fraction in atmospheric layer(clwCCI); Liquid water cloud area fraction (clwtCCI); Atmosphere mass content of cloud condensed water (clwvi); Air pressure at cloud top (pctCCI)

  • This dataset is a compilation of time series, together with uncertainties, of the following elements of the global mean sea level budget and ocean mass budget: (a) global mean sea level (b) the steric contribution to global mean sea level, that is, the effect of ocean water density change, which is dominated, on a global average, by thermal expansion (c) the mass contribution to global mean sea level (d) the global glaciers contribution (excluding Greenland and Antarctica) (e) the Greenland Ice Sheet and Greenland peripheral glaciers contribution (f) the Antarctic Ice Sheet contribution (g) the contribution from changes in land water storage (including snow cover). The compilation is a result from the Sea-level Budget Closure (SLBC_cci) project conducted in the framework of ESA’s Climate Change Initiative (CCI). It provides assessments of the global mean sea level and ocean mass budgets. Assessment of the global mean sea level budget means to assess how well (a) agrees, within uncertainties, to the sum of (b) and (c) or to the sum of (b), (d), (e), (f) and (g). Assessment of the ocean mass budget means to assess how well (c) agrees to the sum (d), (e), (f) and (g). All time series are expressed in terms of anomalies (in millimetres of equivalent global mean sea level) with respect to the mean value over the 10-year reference period 2006-2015. The temporal resolution is monthly. The temporal range is from January 1993 to December 2016. Some time series do not cover this full temporal range. All time series are complete over the temporal range from January 2003 to August 2016. For some elements, more than one time series are given, as a result of different assessments from different data sources and methods. Data and methods underlying the time series are as follows: (a) satellite altimetry analysis by the Sea Level CCI project. (b) a new analysis of Argo drifter data with incorporation of sea surface temperature data; an alternative time series consists in an ensemble mean over previous global mean steric sea level anomaly time series. (c) analysis of monthly global gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry mission. (d) results from a global glacier model. (e) analysis of satellite radar altimetry over the Greenland Ice Sheet, amended by results from the global glacier model for the Greenland peripheral glaciers; an alternative time series consists of results from GRACE satellite gravimetry. (f) analysis of satellite radar altimetry over the Antarctic Ice Sheet; an alternative time series consists of results from GRACE satellite gravimetry. (g) results from the WaterGAP global hydrological model. Version 2.2 is an update of the previous Version 2.1. The update concerns the estimates of ocean mass change from GRACE.

  • This dataset consists of Sea Surface Temperature data with uncertainty estimates, from the Along Track Scanning Radiometer series of satellite instruments (ATSR-1, ATSR-2 and AATSR). It forms part of the collection of datasets from the EUSTACE (EU Surface Temperature for All Corners of Earth) project, which is producing publically available daily estimates of surface air temperature since 1850 across the globe for the first time by combining surface and satellite data using novel statistical techniques. The Sea Surface Temperature data provided here were retrieved in the context of the European Space Agency's (ESA's) Climate Change Initiative (CCI) Sea Surface Temperature (SST) project, and comprise a Level 3c gridded product, on a 0.25 degree grid. This v1.2 product was provided for input into the EUSTACE project. It is provided here for traceability; more recent CCI data is available from the SST CCI catalogue pages.

  • This dataset contains monthly-averaged land surface temperatures (LSTs) and their uncertainty estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Earth Observing System – Terra (Terra). Satellite land surface temperatures are skin temperatures which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. Daytime and night-time temperatures are provided in separate files corresponding to the morning and evening Terra equator crossing times which are 10:30 and 22:30 local solar time. Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and solar geometry angles, a quality flag, and land cover class. The dataset coverage is global over the land surface. LSTs are provided on a global equal angle grid at a resolution of 0.01° longitude and 0.01° latitude. MODIS achieves full Earth coverage nearly twice per day so the daily files have small gaps primarily close to the equator where the surface is not covered by the satellite swath on that day. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. The monthly dataset starts from March 2000 and ends December 2018. There are minor interruptions (1-2 days) during satellite/instrument maintenance periods. The dataset was produced by the University of Leicester (UoL) and LSTs were retrieved using a generalised split window retrieval algorithm and data were processed in the UoL processing chain. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.

  • The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises monthly images of Absorbing Aerosol Index (AAI), using the Multi-Sensor UVAI algorithm, Version 1.4.7. For further details about these data products please see the linked documentation.

  • The data set provides calving front locations of major outlet glaciers of the Greenland Ice Sheet from SAR data from various sensors, produced as part of the ESA Greenland Ice Sheets Climate Change Initiative (CCI) project. Version 1.1 of the dataset has been updated to include information from Sentinel 1 data. The Calving Front Location (CFL) of outlet glaciers from ice sheets is a basic parameter for ice dynamic modelling, for computing the mass fluxes at the calving gate, and for mapping glacier area change. From the ice velocity at the calving front and the time sequence of Calving Front Locations the iceberg calving rate can be computed which is of relevance for estimating the export of ice mass to the ocean. The calving front location has been derived by manual delineation based on SAR or optical satellite data. The CFL product is a collection of ESRI shapefile in latitude and longitude, on WGS84 projection. The basic data are vector line files (not polygons).

  • This dataset consists of monthly averaged total column water vapour (TCWV) over land, at a 0.5 degree resolution, observed by various satellite instruments. It has been produced by the European Space Agency Water Vapour Climate Change Initiative (Water_Vapour_cci), and forms part of their TCVW over land Climate Data Record -1 (TCWV-land (CDR-1). This version of the data is v3.1.