Keyword

CCI

444 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 444
  • This dataset provides a version of the Cloud_cci ATSR2-AATSRv3 monthly gridded dataset in Obs4MIPs format. The Cloud_cci ATSR2-AATSRv3 dataset (covering 1995-2012) was generated within the Cloud_cci project, which was funded by the European Space Agency (ESA) as part of the ESA Climate Change Initiative (CCI) programme (Contract No.: 4000109870/13/I-NB). This dataset is based on measurements taken by the Along-Track Scanning Radiometer (ATSR-2) on-board the European Remote Sensing Satellite -2 (ERS-2), and by the Advanced Along-Track Scanning Radiometer (AATSR) on-board the Environmental Satellite (Envisat). It contains a variety of cloud properties which were derived employing the Community Cloud retrieval for Climate (CC4CL) retrieval framework. This particular Obs4MIPS product has been generated for inclusion in Obs4MIPs (Observations for Model Intercomparisons Project), which is an activity to make observational products more accessible for climate model intercomparisons. Individual files are provided covering seven cloud variables: Cloud area fraction in atmospheric layer (clCCI); Atmospheric cloud ice content (clivi); Cloud area fraction (cltCCI); Liquid water cloud area fraction in atmospheric layer(clwCCI); Liquid water cloud area fraction (clwtCCI); Atmosphere mass content of cloud condensed water (clwvi); Air pressure at cloud top (pctCCI)

  • This dataset comprises estimates of forest above-ground biomass for the years 2010, 2017 and 2018. They are derived from a combination of Earth observation data, depending on the year, from the Copernicus Sentinel-1 mission, Envisat’s ASAR instrument and JAXA’s Advanced Land Observing Satellite (ALOS-1 and ALOS-2), along with additional information from Earth observation sources. The data has been produced as part of the European Space Agency's (ESA's) Climate Change Initiative (CCI) programme by the Biomass CCI team. This release of the data is version 3. Compared to version 2, this is a consolidated version of the Above Ground Biomass (AGB) maps. This version also includes a preliminary estimate of AGB changes for two epochs. The data products consist of two (2) global layers that include estimates of: 1) above ground biomass (AGB, unit: tons/ha i.e., Mg/ha) (raster dataset). This is defined as the mass, expressed as oven-dry weight of the woody parts (stem, bark, branches and twigs) of all living trees excluding stump and roots 2) per-pixel estimates of above-ground biomass uncertainty expressed as the standard deviation in Mg/ha (raster dataset) In addition, files describing the AGB change between 2018 and the other two years are provided (labelled as 2018_2010 and 2018_2017). These consist of two sets of maps: the standard deviation of the AGB change and a quality flag of the AGB change. Note that the change itself can be simply computed as the difference between two AGB maps, so is not provided directly. Data are provided in both netcdf and geotiff format.

  • This dataset contains monthly-averaged land surface temperatures (LSTs) and their uncertainty estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Earth Observing System – Aqua (Aqua). Satellite land surface temperatures are skin temperatures which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. Daytime and night-time temperatures are provided in separate files corresponding to the daytime and night-time Aqua equator crossing times which are 13:30 and 01:30 local solar time. Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and solar geometry angles, a quality flag, and land cover class. The dataset coverage is global over the land surface. LSTs are provided on a global equal angle grid at a resolution of 0.01° longitude and 0.01° latitude. MODIS achieves full Earth coverage nearly twice per day so the daily files have small gaps primarily close to the equator where the surface is not covered by the satellite swath on that day. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. Dataset coverage starts on 4th July 2002 and ends on 31st December 2018. There are minor interruptions (1-2 days) during satellite/instrument maintenance periods. The dataset was produced by the University of Leicester (UoL) and LSTs were retrieved using a generalised split window retrieval algorithm and data were processed in the UoL processing chain. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.

  • The ESA Sea Surface Salinity Climate Change Initiative (CCI) consortium has produced global, level 4, multi-sensor Sea Surface Salinity maps covering the 2010-2020 period. This dataset provides Sea Surface Salinity (SSS) data at a spatial resolution of 25 km and a time resolution of 1 month. This has been spatially sampled on a 25 km EASE (Equal Area Scalable Earth) grid and 15 days of time sampling. A weekly product is also available. In addition to salinity, information on errors are provided. For more information, see the user guide and other product documentation available from the linked Sea Surface Salinity CCI web page. Compared to the previous version of the data, version 3 SSS and associated uncertainties are more precise and cover a longer period (Jan 2010-sept 2020); version 3 SSS are provided closer to land than version 2 SSS, with a possible degraded quality. Users might remove these additional near land data by using the lsc_qc flag.

  • This dataset contains monthly-averaged land surface temperatures (LSTs) and their uncertainty estimates from multiple Infra-Red (IR) instruments on satellites in Geostationary Earth Orbit (GEO) and Low Earth Orbiting (LEO) sun-synchronous (a.k.a. polar orbiting) satellites. Satellite land surface temperatures are skin temperatures, which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. LST fields are provided at 3 hourly intervals each day (00:00 UTC, 03:00 UTC, 06:00 UTC, 09:00 UTC, 12:00 UTC, 15:00 UTC, 18:00 UTC and 21:00 UTC). Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and the solar geometry angles. The product is based on merging of available GEO data and infilling with available LEO data outside of the GEO discs. Inter-instrument biases are accounted for by cross-calibration with the IASI instruments on METOP and LSTs are retrieved using a Generalised Split Window algorithm from all instruments. As data towards the edge of the GEO disc is known to have greater uncertainty, any datum with a satellite zenith angle of more than 60 degrees is discarded. All LSTs included have an observation time that lies within +/- 30 minutes of the file nominal Universal Time. Data from the following instruments is included in the dataset: geostationary, Imagers on Geostationary Operational Environmental Satellite (GOES) 12 and GOES 13, Advanced Baseline Imager (ABI) on GOES 16, Spinning Enhanced Visible Infra-Red Imager (SEVIRI) on Meteosat Second Generation (MSG) 1, MSG 2, MSG 3, and MSG 4, Japanese Advanced Meteorological Imager (JAMI) on Multifunctional Transport Satellite MTSAT) 1, and MTSAT 2; and polar, Advanced Along-Track Scanning Radiometer (AATSR) on Environmental Satellite (Envisat), Moderate-resolution Imaging Spectroradiometer (MODIS) on Earth Observation System (EOS) - Aqua and EOS - Terra, Sea and Land Surface Temperature Radiometer SLSTR on Sentinel-3A and Sentinel-3B. However, it should be noted that which instruments contribute to a particular product file depends on depends on mission start and end dates and instrument downtimes. Dataset coverage starts on 1st January 2009 and ends on 31st December 2020. LSTs are provided on a global equal angle grid at a resolution of 0.05° longitude and 0.05° latitude. The dataset coverage is nominally global over the land surface but varies depending on satellite and instrument availability and coverage. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. The dataset was produced by the University of Leicester (UoL) and data were processed in the UoL processing chain. The Geostationary data were produced by the Instituto Português do Mar e da Atmosfera (IPMA) before being merged into the final dataset. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.

  • This dataset consists of Sea Surface Temperature data with uncertainty estimates, from the Along Track Scanning Radiometer series of satellite instruments (ATSR-1, ATSR-2 and AATSR). It forms part of the collection of datasets from the EUSTACE (EU Surface Temperature for All Corners of Earth) project, which is producing publically available daily estimates of surface air temperature since 1850 across the globe for the first time by combining surface and satellite data using novel statistical techniques. The Sea Surface Temperature data provided here were retrieved in the context of the European Space Agency's (ESA's) Climate Change Initiative (CCI) Sea Surface Temperature (SST) project, and comprise a Level 3c gridded product, on a 0.25 degree grid. This v1.2 product was provided for input into the EUSTACE project. It is provided here for traceability; more recent CCI data is available from the SST CCI catalogue pages.

  • This dataset consists of daily total column water vapour (TCWV) over land, at a 0.05 degree resolution, observed by various satellite instruments. It has been produced by the European Space Agency Water Vapour Climate Change Initiative (Water_Vapour_cci), and forms part of their TCVW over land Climate Data Record -1 (TCWV-land (CDR-1). This version of the data is v3.1.

  • This dataset provides a version of the Cloud_cci AVHRR-AMv3 monthly gridded dataset in Obs4MIPs format. The Cloud_cci AVHRR-AMv3 dataset (covering 1991-2016) was generated within the Cloud_cci project, which was funded by the European Space Agency (ESA) as part of the ESA Climate Change Initiative (CCI) programme (Contract No.: 4000109870/13/I-NB). This dataset is based on intercalibrated measurements from the Advanced Very High Resolution Radiometer (AVHRR) sensors on-board the NOAA prime morning (AM) satellite NOAA-12,-15,-17, and the EUMETSAT Metop-A satellite. It contains a multi-annual, global dataset of cloud and radiation properties which were derived employing the Community Cloud retrieval for Climate (CC4CL) retrieval framework. This particular Obs4MIPS product has been generated for inclusion in Obs4MIPs (Observations for Model Intercomparisons Project), which is an activity to make observational products more accessible for climate model intercomparisons. Individual files are provided covering seven cloud variables: Cloud area fraction in atmospheric layer (clCCI); Atmospheric cloud ice content (clivi); Cloud area fraction (cltCCI); Liquid water cloud area fraction in atmospheric layer(clwCCI); Liquid water cloud area fraction (clwtCCI); Atmosphere mass content of cloud condensed water (clwvi); Air pressure at cloud top (pctCCI)

  • This dataset contains monthly-averaged land surface temperatures (LSTs) and their uncertainty estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Earth Observing System – Terra (Terra). Satellite land surface temperatures are skin temperatures which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. Daytime and night-time temperatures are provided in separate files corresponding to the morning and evening Terra equator crossing times which are 10:30 and 22:30 local solar time. Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and solar geometry angles, a quality flag, and land cover class. The dataset coverage is global over the land surface. LSTs are provided on a global equal angle grid at a resolution of 0.01° longitude and 0.01° latitude. MODIS achieves full Earth coverage nearly twice per day so the daily files have small gaps primarily close to the equator where the surface is not covered by the satellite swath on that day. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. The monthly dataset starts from March 2000 and ends December 2018. There are minor interruptions (1-2 days) during satellite/instrument maintenance periods. The dataset was produced by the University of Leicester (UoL) and LSTs were retrieved using a generalised split window retrieval algorithm and data were processed in the UoL processing chain. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.

  • This dataset contains land surface temperatures (LSTs) and their uncertainty estimates from multiple Infra-Red (IR) instruments on satellites in Geostationary Earth Orbit (GEO) and Low Earth Orbiting (LEO) sun-synchronous (a.k.a. polar orbiting) satellites. Satellite land surface temperatures are skin temperatures, which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. LST fields are provided at 3 hourly intervals each day (00:00 UTC, 03:00 UTC, 06:00 UTC, 09:00 UTC, 12:00 UTC, 15:00 UTC, 18:00 UTC and 21:00 UTC). Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and the solar geometry angles. The product is based on merging of available GEO data and infilling with available LEO data outside of the GEO discs. Inter-instrument biases are accounted for by cross-calibration with the IASI instruments on METOP and LSTs are retrieved using a Generalised Split Window algorithm from all instruments. As data towards the edge of the GEO disc is known to have greater uncertainty, any datum with a satellite zenith angle of more than 60 degrees is discarded. All LSTs included have an observation time that lies within +/- 30 minutes of the file nominal Universal Time. Data from the following instruments is included in the dataset: geostationary, Imagers on Geostationary Operational Environmental Satellite (GOES) 12 and GOES 13, Advanced Baseline Imager (ABI) on GOES 16, Spinning Enhanced Visible Infra-Red Imager (SEVIRI) on Meteosat Second Generation (MSG) 1, MSG 2, MSG 3, and MSG 4, Japanese Advanced Meteorological Imager (JAMI) on Multifunctional Transport Satellite MTSAT) 1, and MTSAT 2; and polar, Advanced Along-Track Scanning Radiometer (AATSR) on Environmental Satellite (Envisat), Moderate-resolution Imaging Spectroradiometer (MODIS) on Earth Observation System (EOS) - Aqua and EOS - Terra, Sea and Land Surface Temperature Radiometer SLSTR on Sentinel-3A and Sentinel-3B. However, it should be noted that which instruments contribute to a particular product file depends on depends on mission start and end dates and instrument downtimes. Dataset coverage starts on 1st January 2009 and ends on 31st December 2020. LSTs are provided on a global equal angle grid at a resolution of 0.05° longitude and 0.05° latitude. The dataset coverage is nominally global over the land surface but varies depending on satellite and instrument availability and coverage. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. The dataset was produced by the University of Leicester (UoL) and data were processed in the UoL processing chain. The Geostationary data were produced by the Instituto Português do Mar e da Atmosfera (IPMA) before being merged into the final dataset. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.