Carbon Dioxide
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
-
This dataset contains measurements of enrichment of 14C in carbon dioxide in air taken from Tacolneston tower. The samples were taken at 185m and analysed by Aerosol Mass Spectrometer (AMS) at Keck-Carbon Cycle AMS facility, University of California, Irvine. This data was collected as part of the NERC GAUGE (Greenhouse gAs UK and Global Emissions) project (NE/K002449/1NERC and TRN1028/06/2015). The GAUGE project aimed to produce robust estimates of the UK Greenhouse Gas budget, using new and existing measurement networks and modelling activities at a range of scales. It aimed to integrate inter-calibrated information from ground-based, airborne, ferry-borne, balloon-borne, and space-borne sensors, including new sensor technology.
-
This dataset contains measurements of enrichment of 14C in carbon dioxide in air taken from the sampling tower at Mace Head Observatory. The samples were taken at 185m and analysed by Aerosol Mass Spectrometer (AMS) at Keck-Carbon Cycle AMS facility, University of California, Irvine. This data was collected as part of the NERC GAUGE (Greenhouse gAs UK and Global Emissions) project (NE/K002449/1NERC and TRN1028/06/2015). The GAUGE project aimed to produce robust estimates of the UK Greenhouse Gas budget, using new and existing measurement networks and modelling activities at a range of scales. It aimed to integrate inter-calibrated information from ground-based, airborne, ferry-borne, balloon-borne, and space-borne sensors, including new sensor technology.
-
The data consists of annual values of soil respiration for plots subjected to climate change manipulations between 1999 and 2016. Data were collected from the climate change field site Climoor that is located in Clocaenog forest, Northeast Wales. The experimental field site consists of three untreated control plots (Plots 3, 6 and 9), three plots where the plant canopy air is artificially warmed during night time hours (Plots 1, 2 and 7) and three plots where rainfall is excluded from the plots at least during the plant growing season (March to September, Plots 4, 5 and 8). Annual soil respiration values were calculated from fortnightly measurements of soil respiration. Soil respiration, milligrammes of Carbon dioxide - C per square metre per hour (mg CO2-C m-2 hr-1) was measured in the same pre-installed opaque soil collars. An infra-red gas analyser was used to measure the Carbon dioxide efflux. Annual soil respiration was calculated as sum of seasonal Carbon dioxide emissions. The Climoor field experiment intends to answer questions regarding the effects of warming and drought on ecosystem processes. Plot level soil respiration measurements are important to investigate soil carbon dynamics and changes in soil carbon cycling and storage under the imposed climatic treatments. More detailed information about the field site, measurements and related datasets can be found in the supporting documentation. Full details about this dataset can be found at https://doi.org/10.5285/253aa0a7-1d5a-446c-a5ca-fe2f0f50f6b1
-
The Penlee Point Atmospheric Observatory (PPAO) was established by the Plymouth Marine Laboratory in May 2014 for long term observations of ocean-atmosphere interaction. The observatory is only a few tens of metres away from the water edge and 11m above mean sea level. This dataset contains air temperature, dew point, wind speed and direction, rainfall, sulphur dioxide, ozone, carbon dioxide and methane measurements from Penlee Point Atmospheric Observatory from 2014-2017. At the mouth of the Plymouth Sound, the site (50° 19.08' N, 4° 11.35' W) is exposed to marine air when the wind comes from 110° - 240°. Typical southwesterly winds tend to bring relatively clean background Atlantic air. In contrast, winds from the southeast are often contaminated by exhaust plumes from passing ships. The PPAO is in close proximity to marine sampling stations that form the Western Channel Observatory, enabling better understanding of the ocean-atmosphere coupling.
-
The Greenhouse Gases Climate Change Initiative (GHG_cci) data products are near-surface-sensitive dry-air column-averaged mole fractions (mixing ratios) of methane (CH4) and carbon dioxide (CO2), created as part of the European Space Agency's (ESA) Greenhouses Gases Essential Climate Variable (ECV) CCI project. Denoted XCO2 (in ppmv) and XCH4 (in ppbv), the products have been retrieved from the SCIAMACHY instrument on ENVISAT and TANSO-FTS onboard GOSAT, using ECV Core Algorithms (ECAs). Other satellite instruments such as IASI, MIPAS and ACE-FTS have also been used to provide constraints for upper layers, with their corresponding retrieval algorithms referred to as Additional Constraints Algorithms (ACAs). The GHG data products are typically updated annually, the corresponding datasets being called Climate Research Data Packages (CRDP). The products have each been generated from individual sensors, a single merged product not having yet been created "combining" the products from different sensors to cover the entire available satellite time series. One merged product has however been generated using the EMMA algorithm, covering a limited time period. This EMMA product is mainly used as a comparison tool for products generated using individual algorithms, making up the collection of products used by EMMA. Typically the same product (e.g. XCO2 from GOSAT) has been generated using different retrieval algorithms. A baseline algorithm has been used to generate one recommended baseline product, for users unsure which product to choose. Other products are called alternative products. However an alternative product's quality may equal that of the corresponding baseline product. It typically depends upon the application for which a product is required, which product is best to use as methods involved in producing them typically have varying strength and weaknesses. For further information on the products, such as details on the SCIAMACHY and TANSO instruments, the algorithms used to generate the data and the data's format, please see the Product Specification Document (PSD) in the documentation section.
-
The Penlee Point Atmospheric Observatory (PPAO) was established by the Plymouth Marine Laboratory in May 2014 for long term observations of ocean-atmosphere interaction. The observatory is only a few tens of metres away from the water edge and 11m above mean sea level. This dataset collection contains air temperature, dew point, wind speed and direction, rainfall, sulphur dioxide, ozone, carbon dioxide and methane measurements from Penlee Point Atmospheric Observatory from 2014-2017. At the mouth of the Plymouth Sound, the site (50° 19.08' N, 4° 11.35' W) is exposed to marine air when the wind comes from 110° - 240°. Typical southwesterly winds tend to bring relatively clean background Atlantic air. In contrast, winds from the southeast are often contaminated by exhaust plumes from passing ships. The PPAO is in close proximity to marine sampling stations that form the Western Channel Observatory, enabling better understanding of the ocean-atmosphere coupling.
-
The dataset contains carbon dioxide and methane emissions, as well as resorufin production (as a proxy for microbial metabolic activity) and dissolved oxygen concentrations, resulting from laboratory incubation experiments of streambed sediments. The sediments were collected from the upper 10 centimetres of the streambed in the River Tern and the River Lambourn in September 2015, with three samples collected from each river. These samples were collected from three areas: silt-dominated sediment underneath vegetation (fine), sand-dominated sediment from unvegetated zones (medium) and gravel-dominated sediment from unvegetated zones (coarse). The sediment was used in laboratory incubation experiments to determine the effect of temperature, organic matter content, substrate type and geological origin on streambed microbial metabolic activity, and carbon dioxide and methane production. The work was carried out as part of a Natural Environment Research Council (NERC) funded PhD (NERC award number 1602135). The work was also part funded through the Seventh Framework Programme (EU grant number 607150). Full details about this dataset can be found at https://doi.org/10.5285/3a0a5132-797c-4ed5-98b9-1c17eaa2f2b7
-
The data resource comprises of two datasets. The first dataset comprises of fortnightly measurements soil respiration, soil temperature, soil moisture and photosynthetic activity. The second data set comprises of fortnightly measurements of rainfall, throughfall and water table depth. Data were collected from the climate change field site Climoor that is located in Clocaenog forest, Northeast Wales during 2015 and 2016. The experimental field site consists of three untreated control plots, three plots where the plant canopy air is artificially warmed during night time hours and three plots where rainfall is excluded from the plots at least during the plants growing season (March to September,) All measurements of this dataset have been carried out every fortnight if not indicated otherwise. Rainfall in millimetres (mm) was measured at the site using a ground-level rain gauge. Rain throughfall (in mm) was measured in each plot using a funnel-bottle construction to collect rain water in the plant canopy. Water table depth was measured for each plot using a measuring tape. Soil respiration and related soil temperature and soil moisture were measured in three areas of each plot. Soil respiration was measured in pre-installed opaque soil collars (20 centimetre diameter) that were installed in 1999. An infra-red gas analyser (EGM-4) was used. Photosynthetic active radiation was measured above the canopy while the soil respiration measurement was conducted. The measurements were carried out by different groups of CEH Bangor staff. The Climoor field experiment intends to answer questions regarding the effects of warming and drought on ecosystem processes. Plot level soil respiration measurements are important to investigate soil carbon dynamics and changes in soil carbon cycling and storage under the imposed climatic treatments. More detailed information about the field site, measurements and related datasets can be found in the supporting documentation. Soil respiration data for 1999-2015 are published and can be requested using the NERC Environmental Information Data Centre and the DOI: 10.5285/4ed6f721-b23b-454e-b185-02ba54d551f0. Full details about this dataset can be found at https://doi.org/10.5285/9df4ca6b-6c24-44f9-be25-0bd97ff9594e