Keyword

Carbon capture and storage

325 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
From 1 - 10 / 325
  • This poster on the UKCCSRC Call 2 project, Process-performance indexed design of task-specific ionic liquids for post-combustion CO2 capture, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-199.

  • Many of the research results from the SACS and CO2STORE projects are published in the scientific literature but in a somewhat fragmented form. This report consolidates some of the key findings into a manual of observations and recommendations relevant to underground saline aquifer storage, aiming to provide technically robust guidelines for effective and safe storage of CO2 in a range of geological settings. This will set the scene for companies, regulatory authorities, nongovernmental organisations, and ultimately, the interested general public, in evaluating possible new CO2 storage projects in Europe and elsewhere. The report can be downloaded from http://nora.nerc.ac.uk/2959/.

  • Excel file containing the bubble measurement data. The dynamic characteristics of CO2 bubbles in Scottish seawater are investigated through observational data obtained from the QICS project. Images of the leaked CO2 bubble plume rising in the seawater were captured. This observation made it possible to discuss the dynamics of the CO2 bubbles in plumes leaked in seawater from the sediments. Utilising ImageJ, an image processing program, the underwater recorded videos were analysed to measure the size and velocity of the CO2 bubbles individually. It was found that most of the bubbles deform to non-spherical bubbles and the measured equivalent diameters of the CO2 bubbles observed near the sea bed are to be between 2 and 12 mm. The data processed from the videos showed that the velocities of 75% of the leaked CO2 bubbles in the plume are in the interval 25-40 cm/s with Reynolds numbers (Re) 500-3500, which are relatively higher than those of an individual bubble in quiescent water. The drag coefficient Cd is compared with numerous laboratory investigations, where agreement was found between the laboratory and the QICS experimental results with variations mainly due to the plume induced vertical velocity component of the seawater current and the interactions between the CO2 bubbles (breakup and coalescence). The breakup of the CO2 bubbles has been characterised and defined by Eotvos number, Eo, and Re.

  • The CO2CARE (CO2 Site Closure Assessment REsearch) project focused on site closure and preparation for transfer of liability of a CO2 storage project in order to assist regulatory authorities and stakeholders in implementing the EU Directive 2009/31/EC on CO2 Geological Storage. The project, which started in January 2011, was funded by the EU 7th Framework Programme and the industry and ran for a period of three years until December 2013. CO2CARE consisted of an international consortium of 23 partners from Europe, USA, Canada, Japan and Australia, represented by universities, research institutes, and energy companies. In order to incorporate up-to-date results and monitoring data 9 key injection sites in Europe and worldwide formed an integral part of the project: (1) Ketzin, Germany; (2) Sleipner, Norway; (3) K12-B, The Netherlands; (4) Rousse, France; (5) Montmiral, France; (6) Frio, USA; (7) Wallula, USA; (8) Nagaoka, Japan and (9) Otway, Australia. Project website: http://www.co2care.org/

  • This poster on the UKCCSRC Call 1 project Chemical looping for low-cost oxygen production and other applications was presented at the CSLF Call project poster reception, London, 27.06.15. Grant number: UKCCSRC-C1-39. The project is based on the concept of CLOU (chemical looping oxygen uncoupling). Various forms of chemical looping are possible with different degrees of integration between the oxygen release and the thermal energy production cycles. • Most of the CLC and CLOU processes proposed thus far are conducted in a fluidised bed reactor encountering problems of contamination of the oxygen carrier and fuel leakage. • The project has designed a hybrid form of chemical looping that achieves the optimal degree of integration of oxygen release and thermal energy production. • The need for intimate contact between the oxygen carrier and the solid fuel is also avoided.

  • To quantify the impact of leaked CO2 purposefully stored in subsea geological formations on the marine ecosystem, CO2 gas was injected into sandy sediments in a small bay in Scotland in 2012. Alongside the experiment, a numerical study was conducted to predict CO2 fate in the bay. CO2 may take the form both of the gas and dissolved phases when it seeps out from the seafloor. The bubble CO2 rises in the water column forming bubble plumes and dissolves into the seawater during its ascent. Measurements indicated that approximately 8–15% of the injected CO2 escaped the sediments in the gas phase and no empirical evidence was seen for fluxes in the dissolved phase. Therefore, it is thought that 85–92% of the CO2 remained within the sediments. However, the results of our numerical study suggest that 10–40% of the injected CO2 stayed in the sediment. Apart from unexpected errors in the present numerical simulation, a possible explanation for this discrepancy may be the heterogeneous nature of the sediment and observations limited in time and space. It is also recognised that the CO2 concentration away from the injection site is undetectably small and that the readily detectable signal is confined to a small area in the vicinity of the injection point. This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Chiaki Mori et. al. Doi:10.1016/j.ijggc.2014.11.023.

  • This project will produce and disseminate the first design and operating guidelines for the flexible operation of CCS pipeline networks. The research will explore how CCS pipeline networks can react effectively to short, medium and long term variations in the availability and flow of CO2 from capture plants, as well as responding to the constraints imposed on the system by the ability (or otherwise) of CO2 storage facilities to accept variable flow. The work will develop relevant scenarios for modelling the likely variability of CO2 flow in a CCS pipeline network, develop hydraulic models of CO2 behaviour, engage stakeholders in the process through practitioner workshops, and deliver guidelines to the industry and other interested stakeholders. Grant number: UKCCSRC-C1-40.

  • The aim of this proposal is to develop and validate a multi-phase flow model for simulating the highly transient flow phenomena taking place in the well-bore during start-up injection of CO2 mixtures into depleted gas fields. The objectives are to: 1.demonstrate the usefulness of the model developed based on its application to a real system as a test case; 2.use the findings in (1) to propose optimum injection strategies and develop Best Practice Guidelines for minimising the risks associated with the start-up injection of CO2 into depleted gas reservoirs. Grant number: UKCCSRC-C2-183.

  • This poster on the UKCCSRC Call 1 project, Chemical Looping for low-cost Oxygen Production, was presented at the Sheffield Biannual, 08.04.13. Grant number: UKCCSRC-C1-39.

  • This presentation on the UKCCSRC Call 1 project, UK Bio-CCS CAP, was presented at the Cranfield Biannual, 22.04.15. Grant number: UKCCSRC-C1-38.