Keyword

Climate change

79 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
From 1 - 10 / 79
  • "The Assimilation in ocean and coupled models to determine the thermohaline circulation" project was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 2 - NE/C509058/1 - Duration 1 Sep 2005 - 30 Sep 2009) led by Prof Keith Haines of the University of Reading, with co-investigators at the National Oceanography Centre. This dataset collection contains Atlantic Ocean Thermohaline Circulation (ATOC) model measurements. To make the best use of the historical research ship records as well as new observations from autonomous ocean profiling floats and special observing programs such as Rapid climate change, it was proposed to assimilate all of the available data from the past 40 years into a high quality ocean circulation model that can represent complete fields of ocean properties. In this way derived quantities such as the north-south mass and heat transports which are vital to understanding the oceans role in controlling climate, could be determined. The project also put into context the various timeseries of observations that have been compiled from local regions which suggest that important changes in ocean circulation and transports have been ongoing in the past decades. These timeseries have been put into a basin scale and global scale context of ongoing change. The program determined the relationship between hydrographic signals in different parts of the ocean basins (particularly the N Atlantic). The program provided a method for assimilating data from the thermohaline monitoring arrays into an ocean model that could then be used as part of a coupled climate model for multi-annual climate prediction. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

  • This collection contains data from "The Quantitative applications of high-resolution late Holocene proxy data sets: estimating climate sensitivity and thermohaline circulation influences" project, which was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 1 - NER/T/S/2002/00440 - Duration 1 Jul 2003 - 30 Jun 2008) led by Prof Keith Briffa of the University of East Anglia, with co-investigators at the University of East Anglia. This dataset collection contains self-calibrating Palmer Drought Severity Index data. This project analysed the output from state-of-the-art coupled climate models in conjunction with very long instrumental climate data and an extensive archive of annual- and selected decadal-resolution palaeoclimate data to study climate changes during the past millennium. Actual and model-derived synthetic networks of palaeoclimate data have been used to estimate the extent to which (i) variations in Atlantic meridional overturning circulation strength; (ii) variations in the North Atlantic Oscillation; and (iii) the sensitivity of climate to external forcing changes can be reconstructed from different networks of palaeoclimate data, making assumptions about coverage, seasonality of response and reliability of expressed climate signal.

  • The main tools that are used for making projections of climate change in the coming century resulting from greenhouse-gas and other emissions are detailed coupled three-dimensional models of the atmosphere and ocean. However, such models give widely different results for some important aspects of climate change, thus limiting our ability to make practically useful projections. One such aspect is changes that may happen in the Atlantic Ocean thermohaline circulation, often referred to as the Gulf Stream. This circulation transports a great deal of heat northwards. If it weakened, future warming in Europe in particular could be reduced or possibly reversed. The spread of model results basically reflects limitations in current understanding of how the large-scale climate system operates. The aim of this project was to identify which are the most important aspects of that uncertainty by making comparisons of the responses simulated by a range of climate models. The results were intended to help improve the models by focusing attention on the aspects which require further theoretical or observational study. This dataset collection contains meteorology and ocean model outputs. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

  • "To what extent was the Little Ice Age a result of a change in the thermohaline circulation?" project. This was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Joint International Round - NE/C509507/1 - Duration 1 Aug 2005 - 31 Jul 2008) led by Dr Tim Osborn of the University of East Anglia, with co-investigators at the University of East Anglia and Royal Netherlands Meteorology Institute. The dataset contains negative North Atlantic Oscillation model output from the HadCM3 model.

  • "Improving our ability to predict rapid changes in the El Nino Southern Oscillation climatic phenomenon" project, which was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 1 - NER/T/S/2002/00443 - Duration 1 Jan 2004 - 30 Sep 2007) led by Prof Alexander Tudhope of the University of Edinburgh, with co-investigators at the Scottish Universities Environment Research Centre, Bigelow Laboratory for Ocean Sciences, and the University of Reading. This dataset collection contains meteorology and ocean model outputs from FAMOUS model. The objective was to use a combination of palaeoclimate reconstruction from annually-banded corals and the fully coupled HadCM3 atmosphere-ocean general circulation model to develop an understanding of the controls on variability in the strength and frequency of ENSO, and to improve our ability to predict the likelihood of future rapid changes in this important element of the climate system. To achieve this, we targeted three periods:0-2.5 ka: Representative of near-modern climate forcing; revealing the internal variability in the system.6-9 ka: a period of weak or absent ENSO, and different orbital forcing; a test of the model's ability to capture externally-forced change in ENSO.200-2100 AD: by using the palaeo periods to test and optimise model parameterisation, produce a new, improved, prediction of ENSO variability in a warming world. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

  • RAPID-WATCH VALOR project investigated how the inclusion of RAPID-WATCH observations into the 'initial conditions', used to start climate model simulations, can refine predictions of the future climate and, particularly, the future state of the Atlantic Meridional Overturning Circulation (AMOC). This dataset collection contains Meteorology ECMWF Model output.

  • "To what extent was the Little Ice Age a result of a change in the thermohaline circulation?" project. This was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Joint International Round - NE/C509507/1 - Duration 1 Aug 2005 - 31 Jul 2008) led by Dr Tim Osborn of the University of East Anglia, with co-investigators at the University of East Anglia and Royal Netherlands Meteorology Institute. The dataset contains fresh water hosing model output from the LOC experiment run by the HadCM3 model. The freshwater was added to the North Atlantic basin to a localised area covering parts of the GIN Sea and the Barents Sea.

  • Data from "The impact of climate change on the North Atlantic and European storm-track and blocking" project was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 2 - NE/C509115/1 - Duration 14 Mar 2005 - 13 Mar 2008) led by Prof Sir Brian Hoskins of Imperial College London, Grantham Institute for Climate Change, with co-investigators also at the University of Reading. This dataset collection contains Unified Model climate temperature outputs from model run xcth. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

  • "To what extent was the Little Ice Age a result of a change in the thermohaline circulation?" project. This was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Joint International Round - NE/C509507/1 - Duration 1 Aug 2005 - 31 Jul 2008) led by Dr Tim Osborn of the University of East Anglia, with co-investigators at the University of East Anglia and Royal Netherlands Meteorology Institute. The dataset contains fresh water hosing model output from the SIB experiment run by the HadCM3 model. The freshwater was added to the Arctic Ocean north of the Siberian coast.

  • Published papers for NERC grant NE/I020571/2. Grant award abstract: How does the Earth's climate recover from events of rapid and extreme global warming or cooling? Why have the huge fluctuations in atmospheric CO2 in the geological past not caused runaway climate effects, making the Earth become Venus- or Mars-like? Silicate weathering of the continents is the main CO2 removal process, and therefore a dominant long-term climate control mechanism. However the debate on what controls silicate weathering, and therefore atmospheric CO2, is still contentious and ongoing. A correct understanding of the controls on weathering, and its link to atmospheric CO2 levels is critical, because 1) it is possible that weathering is the process that has kept Earth's climate in the relatively narrow bounds required for life over the past several hundred million years; 2) it is impossible to decipher the causes and consequences of long-term climate variations through Earth's history without accurate weathering data, which in turn impacts on our understanding of current climate; 3) comprehension of climate systems leads to more accurate modelling of future climate change; 4) rapid global climate change inevitably leads to large mass extinctions. Therefore it is important to unravel the link between extinctions and the Earth's climate systems, including CO2 control. Lithium isotopes have gained much interest over the past few years because large variations in the Li isotope ratio in rivers and clays are caused by silicate weathering processes. Furthermore, unlike tracers of weathering used previously, Li isotopes also respond to the intensity of weathering, and therefore can be linked directly to weathering rates. This is critical, because for the first time is gives us a window into the variation of weathering rates through time, which in turn means we can use the Earth's past climate variations as a natural laboratory. Three of the largest climate fluctuations and mass extinctions in Earth's history will be examined and modelled, primarily using Li isotopes, but also several other tracers, which will serve to reveal information on marine and volcanic conditions at the time. These geological periods (the end-Ordovician glaciation (450 Ma (million years ago)), the Permo-Triassic event (251 Ma) and the Cenomanian-Turonian Ocean Anoxic Event (94 Ma)), represent times when rapid warming or cooling of Earth's climate occurred, resulting in the extinction of up to 90% of life on Earth. Samples from these time periods exist in the form of marine calcium carbonate. This was precipitated (either inorganically, or via various life forms) in the oceans at the time, and provides a record of ocean chemistry, which in turn is directly linked to the atmospheric conditions. Analysing Li isotopes is a complex procedure, and will be undertaken at Oxford University. Collaborations will exist with Prof. Jan Veizer (Ottawa University) and Dr. Christoph Korte (Copenhagen University), who are specialists in the studied time periods, with Prof. Andy Ridgwell (Bristol University), who is an expert climate modeller, and with Prof. David Harper, who is an expert in mass extinctions. By understanding weathering and climatic responses to periods of rapid global warming and cooling we will gain critical information on Earth's climate feedbacks, and on processes that led to the extinction of vast proportions of the biosphere.