From 1 - 10 / 65
  • Comparable deep-water benthos datasets collected by epibenthic sledges (EBS) with an epibenthic and a suprabenthic netsampler in the Atlantic Ocean have been gathered since 2006. They were collected during the international research expeditions: ANDEEP-SYSTCO II, BIOPEARL I, DIVA1-3, IceAGE1-3&RR, IceDIVA1,2, JR275 and Vema-TRANSIT. While EBS diversity data at high taxon level were published for ANDEEP_SYSTCO II, DIVA1-3 and Vema-TRANSIT, unpublished diversity data for BIOPEARL I, IceAGE1-3&RR, IceDIVA1, 2 and JR275 came from sample databases at DZMB Senckenberg and British Antarctic Survey, and are published here for the first time. In total, diversity data for 143 EBS deployments from 13 expeditions were available for analyses based on identification on 50 taxon levels, including phyla, subphyla, classes and orders. During all 13 expeditions EBS with an epibenthic and a suprabenthic netsampler following sampler sizes and height , enabling comparability of samples. This type of EBS was a suitable device for sampling small benthic fauna on and above the seabed, including macrofauna and small-sized megafauna. We analyse pan-Atlantic benthic data from a range (119m - 8338m) of depths. For the pan-Atlantic analyses we defined seven regions to pool EBS locations based on their position North and South of the Equator and to the mid-Atlantic Ridge (MAR): East and West of the MAR, the Vema Fracture Zone as a gap in the MAR, the Southern Ocean south of the MAR and the Puerto Rico Trench as a deep-sea trench. In this study we included data for 41 higher taxa of the initially separated 50 taxa ranging from phyla to orders. The environmental parameters for this study were provided by Bio-ORACLE, which identifies mean values for different physical and chemical variables over a 14 year time period through a combination of satellite and in-situ measurements (2000 - 2014), at a resolution of 5 arcmin. 4 multivariate analyses (principal components analysis, analysis of similarities, similarity of percentages and BioEnv BEST) were carried out on standardised abundances using PRIMER software, the results and parameters of which are presented in this dataset. Funding over the years for the sample collection and analyses was provided by multiple NERC grants and international grants. Katrin Linse, Peter Enderlein and Huw J. Griffiths were part of the British Antarctic Survey Polar Science for Planet Earth Programme funded by The Natural Environment Research Council (NERC) [NC-Science] and included the funding for the RSS James Clark Ross expeditions BIOPEARL I and JR275. This study was directly funded by the IceAGE_RR and IceDIVA grants by the German Science Foundation (DFG) and Bundesministerium fur Bildung und Forschung (BMBF) under grant numbers MSM75 (MerMet17-5), SO280 and SO286 to PIs Saskia Brix, James Taylor and Katrin Linse. Funding for previous expeditions that provided data were: IceAGE1-3, BR3843-3-1& 4-1, & SO276 (MerMet17-6). James Taylor and Karlotta Kurzel were supported via DFG grant GPF 20-3_087 as part of the IceDiva project 2021 - 2022 by DFG. Anne-Nina Lorz was funded by the German Science Foundation Project IceAGE Amphipoda, LO2543/1-1. Additionally, Angelika Brandt was granted funding (SO 237, Forderziffer 03G0237A) by the Bauer Foundation for the VEMA-Transit project. Inmaculada Frutos was supported through the junior research group''''Vema TRANSIT. Puerto Rico Trench, Vema Fracture Zone and Abyssal Atlantic Biodiversity Study'''' as part of the project ''''Biodiversitatnachhaltige Ressourcennutzun'''' (Aktenzeichen T237/25054/).

  • The soil food webs in this collection represent seven belowground communities from native and agricultural soils. The seven communities are from experimental research sites in the USA, Sweden and the Netherlands. The Jacobians of the seven food webs were calculated by de Ruiter et al. (1995) using the empirical biomass data of the respective systems, and inferring steady-state biomass flow data using a procedure described by Hunt et al. (1987), see further references below. The Jacobians represent the interaction strengths of the species in the two food webs, evaluated at equilibrium.

  • Mesozooplankton were collected with a motion-compensated Bongo net (61 cm mouth diameter, 100 and 200 micrometre meshes) and a mini- Bongo net (18 cm mouth diameter, 50 micrometre mesh nets). Both nets fished to a maximum depth of 400 m but sometimes shallower. Specimens were categorised to the lowest possible taxonomic level, which in some cases encompassed developmental stages but in other cases was limited to higher order taxa. Each taxa was enumerated to determine abundance in units of individuals m-2. The dataset allows examination of the distribution and abundance of these species within the Atlantic sector of the Southern Ocean over a number of years and covering much of the productive season from spring to autumn. The data for the North Atlantic and Arctic covers one season only (summer) and is limited to providing a spatial perspective on the distribution and abundance of mesozooplankton.

  • The Antarctic food webs represent two entire above-belowground communities from Signy Island Reference Sites on Signy Island, one of the South Orkney Islands in the Maritime Antarctic. The two communities are a dry moss community (Antarctic dry tundra) and a wet moss community (Antarctic wet tundra). These two communities were the focus of intensive biological study by personnel from the British Antarctic Survey over the course of a decade in the 1970''s, of which the results were finally compiled into a meta-analysis by Davis (1981). The Jacobians of the dry and wet tundra were calculated by Neutel and Thorne (2014) using the empirical biomass and flow data of the respective systems from Davis'' analysis. The Jacobians represent the interaction strengths of the species in the two food webs, evaluated at equilibrium.

  • Multiple images of the seafloor at six sites across a broad latitudinal range in the Barents Sea in the Arctic were collected in July 2017 on the month long scientific cruise JR16006. The dataset includes environmental variables for each accompanied image. Each image (406 x 341mm) has density of fauna from different functional groups. We have 13 different functional groups based on other similar studies. The aim was to look at the effect of climate change in the Arctic on the biology of the seafloor. Funding was provided by the NERC Changing Arctic Oceans ChAOS project.

  • Mesozooplankton were collected with a MOCNESS net system during the oceanographic cruise JR16003 (Dec 2016 to Jan 2017). The MOCNESS comprised 9 separate nets which opened in sequence such that the closing of one net opened the next; net 1 was open during the descent of the net to its maximum depth (1000 m) while the remaining 8 depths opened at regular intervals during the reascent to the surface. All catches were immediately preserved in 4% buffered formaldehyde. Identification of taxa was performed by the Morski Institute (Poland). Specimens were categorised to the lowest possible taxonomic level, which, in some cases, encompassed developmental stages but, in other cases, was limited to higher order taxa. Each taxa was enumerated to determine abundance in units of individuals m-3. The dataset allows examination of the distribution and abundance of these species across Polar Frontal Zone in Southern Ocean Atlantic sector. The survey was funded by The UK Natural Environment Research Council (NERC) and carried out as part of the POETS Wester Core Box and SCOOBIES programmes at British Antarctic Survey. The time of Geraint Tarling and the analysis of the MOCNESS nets was funded by the NERC grant "SeaDNA - Assessing marine biodiversity and structure using environmental DNA: from groundtruthing to food web structure and stability" NE/N00616X/1 PI: Stefano Mariani.

  • Results of sediment trap analysis conducted by British Antarctic Survey, University of Edinburgh and University of Bristol. Abundances and biovolume of intact phytoplankton and microzooplankton cells observed in sediment trap samples are presented. Data from two sediment traps deployed in the Scotia Sea, Southern Ocean, are presented (shallow=400 m, and deep = 2000 m). 4 samples were analysed from each, two in January/February 2018, and two in December 2018. Each sediment trap sample was split into multiple fractions to facilitate this and other analyses. Data facilitate the understanding of the magnitude and drivers of particulate fluxes in the Scotia Sea, Southern Ocean. Work funded by NC-ALI funding to the British Antarctic Survey Ecosystems programme.

  • In-situ underwater images were gathered during the expedition JR17003a of RRS James Clark Ross to the eastern Antarctic Peninsula in March 2018. The BAS'' Shallow Underwater Camera System (SUCS) has been used to estimate faunal density, biomass and species abundance of the benthos and to provide an overview of the conditions of the underwater landscape. Funding was provided by NERC urgency grant NE/R012296/1 ''Benthic biodiversity under Antarctic ice-shelves - baseline assessment of the seabed exposed by the 2017 calving of the Larsen-C Ice Shelf''.

  • The soil food webs in this collection represent a total of 32 belowground communities studied by Neutel et al. (2007), from two natural successions in sandy dune soils: one on the Waddensea Island of Schiermonnikoog in the north of the Netherlands and the other at Hulshorsterzand, on the Veluwe, in the central Netherlands. The study sites, which constitute the two gradients, represent four consecutive stages in chronosequences of early primary vegetation succession, increasing in aboveground and below-ground productivity. The Jacobians of the 32 food webs (two series, four stages with four replicates per stage) were calculated by Neutel et al. (2007) from observed average biomass data of the respective systems, and inferring steady-state biomass flow data using a procedure described by Hunt et al. (1987). The Jacobians represent the interaction strengths of the species in the two food webs, evaluated at equilibrium.

  • Macrozooplankton and nekton were collected with a Rectangular Midwater Trawl 25 (RMT25) at locations within the Benguela Current region in May and June 2018. The work was carried out as part of the NERC Large Grant, COMICS (Controls on Mesopelagic Interior Carbon) on board the RRS Discovery (cruise DY090). Depth-discrete samples were collected across four time stations (BS1, BN1-3) between 0-750 m at intervals of 750-500m, 500-250m, 250-125m and 125-10 m. At each time station, two RMT25 hauls were deployed in the hours of darkness and two in daylight, with 16 deployments being undertaken overall. The RMT25 was operated via a downwire net monitor and was equipped with a flow meter, and temperature and salinity sensors. Nets in the deep strata (750-500m and 500-250m) were sampled for approximately 40 mins. and nets in the shallow strata (250-125m, 125-10m) for approximately 20mins. Catches were immediately sorted on board and identified to the lowest taxonomic level feasible. All fishes and subsamples of the other parts of the catch were retained (frozen), principally for subsequent biochemical and physiological analyses. In total, 1917 fish were caught and preserved (not including Cyclothone spp.). Catches were dominated by the myctophids and various other mesopelagic fish species. The water column below 250m was dominated by Bathylagus spp. and genus Melamphidae spp. The most numerous fish overall were the Cyclothone spp. which occurred in large numbers below 500m. In deeper depth intervals (250m-750m), the macrozooplankton component of the RMT25 net catches was mostly dominated by Decapoda and hydromedusae of the genus Atolla spp.. Salps, smaller hydromedusa species and small euphausiids Euphausia hanseni and Nematocelis megalops dominated the shallower depths (10-250m).