From 1 - 10 / 51
  • The dataset lists information about boreholes drilled by hot water into Khumbu Glacier, Nepal. Boreholes were drilled in May 2017 and May 2018 to investigate the internal properties of Khumbu Glacier, specifically ice thickness, temperature, deformation and structure, as part of the NERC-funded ''EverDrill'' research project. The information provided includes each borehole''s ID, length, location (at the time of drilling), elevation and instrumentation. Funding was provided by the NERC grant NE/P00265X/1 and NE/P002021/1.

  • Model output from a series of idealised ice shelf-ocean simulations, demonstrating a new synchronously coupled modelling method as well as the response of ice shelf buttressing to melt under various temperature forcings.

  • The dataset lists information about the instrumentation of boreholes drilled into Khumbu Glacier, Nepal. Boreholes were drilled in May 2017 and May 2018 to investigate the internal properties of Khumbu Glacier, specifically ice thickness, temperature, deformation and structure, as part of the NERC-funded ''EverDrill'' research project. The information provided includes each borehole''s ID, length, location, elevation and instrumentation, including the type and depth of each sensor. Funding was provided by the NERC grant NE/P00265X/1 and NE/P002021/1.

  • The output of a 40-year coupled ice-ocean run of Smith Glacier, the adjoining Dotson and Crosson ice shelves, and the nearby continental shelf, with ocean boundary conditions forced with a climatology downscaled from a regional model of the Amundsen Sea. Funding was provided by the NERC Standard Grant NE/M003590/1 - Is ice loss from West Antarctica driven by ocean forcing or ice and ocean feedbacks?

  • The survey collected a total of 11,500 km of data along 22 lines, spaced 12 km apart and oriented perpendicular to the strike of both the Bouguer anomaly field, as derived from land data (McGibbon and Smith, 1991), and the major sub-ice topographical features (Doake et al., 1983). The speed of the aircraft was set to produce a sample spacing of about 60 m and the data were collected at heights between 1600 and 2000 m above sea level. The gravity signal was recorded using a LaCoste and Romberg air/sea gravimeter, S-83, which has been kindly loaned to BAS by the Hydrographic Office of the Royal Navy. The meter was modified by the ZLS company for use in an aircraft. The equipment was deployed in a BAS De-Havilland Twin Otter aircraft. Differential, dual frequency, carrier phase, GPS measurements of the aircraft''s motion were made using Trimble and Ashtech geodetic receivers and antennas. Ice thickness data were obtained using a BAS-built, radio echo sounding system (Corr and Popple, 1994). Ice-bottom returns over most of the survey area were obtained at a sample spacing of approximately 28 m. GPS measurements were tied into base stations in International Terrain Reference Frame network (Dietrich et al., 1998) and gravity measurements to base stations in the IGSN71 net (Jones and Ferris, 1999). We present here the processed bed elevation picks from airborne radar depth sounding collected using the BAS PASIN radar system. Data are provided as XYZ ASCII line data.

  • The data set was produced for the work detailed in ''The response of ice sheets to climate variability'' by K Snow et al (2017, Geophys Research Letters). A coupled ice sheet-ocean model is configured in an idealised setting with an inland-deepening bedrock, forced by far-field hydrographic profiles representative of the Amundsen Sea continental shelf. Similar to observed variability, the thermocline depth in the far-field is moved up and down on various times scales as detailed in the publication, with periods ranging from 2 to ~50 years. Bedrock elevation is provided, and annual melt rate and ice thickness (or sub-annual for short time scales) is provided as well for each forcing period. In addition, similar experiments were carried out with an ice-only model with parameterised forcing. These outputs are provided too.

  • Glacial outlines of the APIS (Antarctica Peninsula Ice Sheet) for 1988, 2001, 2009. This is now incorporated into the GLIMS (Global Land Ice Measurements from Space) project.

  • During the austral summer of 2004/05 a collaborative US/UK field campaign undertook a systematic geophysical survey of the entire Amundsen Sea embayment using comparable airborne survey systems mounted in Twin Otter aircraft. Here we present the portion of the survey covering the Pine Island Glacier basin led by British Antarctic Survey. Operating from a temporary field camp (PNE, S 77deg34'' W 095deg56''); we collected ~35,000 km of airborne survey data. Our aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, gravity meter, and a new ice-sounding radar system (PASIN). We present here the bed elevation picks from airborne radar depth sounding collected using the BAS PASIN radar depth sounding system. Data are provided as XYZ ASCII line data.

  • An airborne radar survey was flown as part of the GRADES-IMAGE project funded by BAS over the Evans Ice stream/Carson Inlet region mainly to image englacial layers and bedrock topography during the 2006/07 field season. Aeromagnetic data were also opportunistically collected. We present here the bed elevation picks from airborne radar depth sounding collected using the BAS PASIN radar depth sounding system. Data are provided as XYZ ASCII line data.

  • This gridded dataset provides geometry (ice thickness and bedrock topography) covering the Pine Island Glacier catchment. It has been created using the principle of mass conservation, given observed fields of velocity, surface elevation change and surface mass balance, together with sparse ice thickness data measured along airborne radar flight-lines. Previous ice flow modelling studies show that gridded geometry products that use traditional interpolation techniques (e.g. Bedmap2) can result in a spurious thickening tendency near the grounding line of Pine Island Glacier. Removing the cause of this thickening signal, in order to more accurately model ice flow dynamics, has been the motivation for creating a new geometry that is consistent with the conservation of mass. This data was funded by a PhD project within the iSTAR-C programme (with NERC grant reference NE/J005738/1).