From 1 - 10 / 15
  • A time series of the mean surface elevation along a transect across Kangerdlugssuaq Glacier from Feb 2012 to May 2018. Funding: Data were processed under NERC project CALISMO NE/P011365/1. Data were acquired under NERC project NE/I007148/1. Data were supplied by DLR.

  • These files are gridded topography, rates of surface elevation change, and errors as 500m and 1km posting determined from surface elevation measured by swath processing of data acquired by the interferometric radar altimeter CryoSat-2. The gridded products cover the Greenland Ice Sheet between 2011 and 2016. These data have been processed by the University of Edinburgh and are made publicly available as part of a European Space Agency funded project involving the University of Edinburgh, isardSat UK, University of Leeds-CPOM, ENVEO. Gridded elevation and elevation change over the CryoSat-2 LRM sector of the Greenland Ice Sheet are provided by CPOM. This dataset is part of ESA''s CryoTop Evolution project.

  • Two maps of surface elevation change for Thwaites Glacier, West Antarctica. Change is in metres between 2013-12-21 and 2017-07-11, and between 2017-07-11 and 2020-11-02. The work was funded by NERC projects NE/P011365/1 and NE/S006605/1.

  • Digital Elevation Model (DEM) of the Antarctic Ice Sheet derived from Global Navigation Satellite Systems-Reflectometry (GNSS-R) data from the UK TechDemoSat-1 satellite. This is obtained using all available data from the mission (32 months). It has a median bias under 18 metres and Root Mean Square Difference under 91 metres when compared to the CryoSat-2 1 km v1.0 DEM (Slater et al., 2017). This work was supported by the Natural Environmental Research Council [grant number NE/L002531/1]. ***** PLEASE BE ADVISED TO USE VERSION 2.0 DATA ***** The VERSION 2.0 data set (see ''Related Data Set Metadata'' link below) uses improved processing and an additional 13 months of measurements.

  • The Antarctic mass trends have been collated from a combination of different remote sensing datasets. These are trends of yearly elevation changes over Antarctica for the period 2003-2013 due to the different geophysical processes driving changes in Antarctica: ice dynamics, surface mass balance and glacio-isostatic adjustment (GIA). Net trends can be easily calculated by adding together surface and ice dynamics trends. 20 km gridded datasets have been produced for each process, per year (except the GIA solution which is time-invariant). To convert elevation to mass trends, we also provide the density fields for surface (SMB) and GIA processes used in Martin-Espanol et al (2016). These can be directly multiplied by the dh/dt. To convert dh/dt from ice dynamics, simply multiply by the density of ice. Mass smb = dh/dt smb * d surf Mass ice = dh/dt ice * d ice (not provided) Mass gia = dh/dt gia * d rock NERC grant: NE/I027401/1

  • A time series of surface elevation at a point on Thwaites Glacier, West Antarctica. The point is on grounded ice and is upstream of a sub-shelf cavity on the west flank of the fast-moving core of Thwaites Glacier. There are a total of 88 points. First column = yyyy-mm-dd, second column = elevation in metres. The work was funded by NERC projects NE/P011365/1 and NE/S006605/1.

  • These files are gridded topography, rates of surface elevation change, and errors as 500m and 1km posting determined from surface elevation measured by swath processing of data acquired by the interferometric radar altimeter CryoSat-2. The gridded products cover the Antarctic Ice Sheet between 2011 and 2016. These data have been processed by the University of Edinburgh and are made publicly available as part of a European Space Agency funded project involving the University of Edinburgh, isardSat UK, University of Leeds-CPOM, ENVEO. Gridded elevation and elevation change over the CryoSat-2 LRM sector of the Antarctic Ice Sheet are provided by CPOM.

  • These files are surface elevation determined from swath processing of data acquired by the interferometric radar altimeter CryoSat-2. The data have been collected and processed over the Greenland Ice Sheet between 2011 and 2016. These data have been processed by the University of Edinburgh and are made publicly available as part of the European Space Agency funded CryoSat+ CryoTop Evolution STSE Study (ESA Contract 4000116874) involving the University of Edinburgh, isardSat UK, University of Leeds-CPOM, ENVEO.

  • Thwaites Glacier, West Antarctica. An animated time series plot of 64 profiles of ice base and surface elevation along a flowline based on the mean flow direction. The flowline passes through a region of large elevation change that took place between 2014 and 2017. The work was funded by NERC projects NE/P011365/1 and NE/S006605/1

  • Thwaites Glacier, West Antarctica. A time series of 156 profiles of ice surface elevation along a flowline based on the mean flow direction. The flowline passes through a region of large elevation change that took place between 2014 and 2017. The work was funded by NERC projects NE/P011365/1 and NE/S006605/1.