From 1 - 10 / 14
  • We present three new gridded bathymetric compilations of Sheldon Cove, Borgen Bay and Marian Cove. These bathymetry grids were compiled from EM122 multibeam swath bathymetry data acquired during three different cruises (RRS James Clark Ross JR17001, JR18003 and JR19002 cruises also known as NERC- ICEBERGS cruises) from 2017 to 2020. The data is available as grids of 5 m resolution in NetCDF and GeoTIFF formats using geographic coordinates on the WGS84 datum. This grid was compiled as part of the ICEBERGS (Impacts of deglaciation on bentic marine ecosystems in Antarctica) project. Funding was provided by the NERC grant NE/P003087/1.

  • On cruise JR157 the Isis ROV was deployed on 15 dives in the Marguerite Trough area in January and February 2007. We present here the data acquired during dives 10 and 11. Dives 10 and 11 targeted a bedrock channel system on the inner continental shelf to investigate channel incision processes and the history of glaciation in the area. The plan was to map parts of the channel walls and thalweg, and then to use these data to locate the best coring sites within the channel system. In reality, several small patches of bathymetric data were acquired from the channels by a multibeam echosounder mounted on the ROV. This research was funded by UK Natural Environment Research Council grant AFI06/14 (NE/C506372/1) to J.A. Dowdeswell, R.D. Larter and G. Griffiths.

  • We present a bathymetric compilation of Ryder Bay here defined by the following bounding box: 68.48 to 68W, 67.7 to 67.46S. This bathymetry grid was compiled from a variety of multibeam swath bathymetry data acquired during 18 different cruises (see lineage) undertaken by the RRS James Clark Ross. The data is available as a grid of 0.0005 degrees resolution in two different formats: a GMT-compatible (2-D) NetCDF and Arc/Info and ArcView ASCII grid format using geographic coordinates on the WGS84 datum.

  • This gridded dataset contains the revised bathymetry model beneath the Brunt Ice Shelf and Stancomb-Wills Glacier Tongue, Antarctica, The revised bathymetric model integrates existing direct bathymetry observations and free air gravity anomaly data to provide the best possible estimate of sub-ice shelf bathymetry. The input direct bathymetric/topographic observations, observation locations, and the input free air compilation are also available as additional separate grid files. All files are provided in NetCDF format in Antarctic Polar Stereographic (EPSG:3031) projection with a horizontal resolution of 2km. The output bathymetry model (Final_adjusted_topography.nc), input topographic observations (Topographic_value_grid.nc) and input topographic observation coverage (Topographic_observation_coverage.nc) have elevation values of metres, positive upwards. The input free air gravity anomaly grid (Brunt_FAA_compilation_grid.nc) has values of mGal. The bathymetric model was produced for the paper of Hodgson et al., (2019) investigating the past and future dynamics of the Brunt Ice Shelf. The publication reference is; Hodgson, D. A., Jordan, T. A., De Rydt, J., Fretwell, P. T., Seddon, S. A., Becker, D., Hogan, K. A., Smith, A. M., and Vaughan, D. G.: Past and future dynamics of the Brunt Ice Shelf from seabed bathymetry and ice shelf geometry, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-206, in review, 2018.

  • We present extensive new bathymetric compilation over Anvers-Hugo Trough, Perrier Trough and Palmer Deep, here defined by the following bounding box: 66.15 to 64.0 W, 65.25 to 63.6 S. This bathymetry grid was compiled from a variety of different data sources including multibeam swath bathymetry collected from scientific cruises undertaken by British Antarctic Survey (BAS), United Kingdom Hydrographic Office, or acquired during RVIB Nathaniel B. Palmer, HMS Protector and RV Maurice Ewing expeditions. The data is available as a 30m resolution grid either in a NetCDF format using WGS84 coordinate system (EPSG: 4326) or in an ESRI ASCII interchange raster format in standard Antarctic polar stereographic coordinates (EPSG 3031). The grid have been created using the MB-system mbgrid program. For further information regarding the creation of this dataset please refer to the associated article and the supplementary information.

  • We present a new compilation of multibeam-bathymetric data for the inner Amundsen Sea continental shelf beyond Thwaites and Pine Island glaciers (bounding box: 100W to 110W, 74S to 75.5S). The region includes Pine Island Bay, marine areas offshore the Thwaites Ice Shelf to the Crosson Ice Shelf, and covers an area of 74,750 km2. The bathymetric grids were compiled from all available multibeam echosounder (MBES) data acquired by UK, German, USA and Korean scientific cruises to the area between 1999 and 2019 (see lineage). Three grids of sea floor elevation data are available in a range of formats (ESRI ascii interchange format and GMT-compatible netCDF 4byte float): a 50-m resolution grid with no interpolation, a 50-m grid interpolated up to 300 m from cells with real data, and a 500-m resolution grid with no interpolation. Note that these grids have not been merged with regional bathymetric grids and, therefore, do not have continuous coverage (i.e. cells are only populated where multibeam data exist). This work was supported by grants from the National Science Foundation (NSF: Grant OPP- 1738942) and Natural Environment Research Council (NERC: Grant NE/S006664/1) as part of the International Thwaites Glacier Collaboration (ITGC) programme, and grants NE/J005770/1 and NE/J005703/1 as part of the iSTAR Programme.

  • Bathymetric compilation of the Brunt sub Ice Shelf, East Antarctic Ice Sheet. The bathymetry grid was compiled from a variety of different sources including multibeam swath bathymetry collected from scientific cruises undertaken by British Antarctic Survey (BAS) and Alfred Wegener Institute (AWI). Multibeam data were supplemented with regional bathymetry from the International Bathymetric Chart of the Southern Ocean (IBSCO) and seismic data. The data is available as a 500m resolution grid using the IBSCO polar stereographic projection. For further information regarding the creation of this dataset please refer to https://doi.org/10.5194/tc-12-2383-2018.

  • We present a new bathymetric compilation of the South Shetland Islands here defined by the following bounding box: 63 to 53.3 W, 63.5 to 60.5 S. This bathymetry grid was compiled from a variety of multibeam swath bathymetry data acquired during 76 different cruises (see lineage). The data is available as a grid of approximately 100 m resolution in two different formats: a GMT-compatible (2-D) NetCDF and Arc/Info and ArcView ASCII grid format using geographic coordinates on the WGS84 datum.

  • We present two new gridded bathymetric compilations of the Orkney Passage, Scotia Sea here defined by the following bounding boxes: 39.1 to 39.6 W, 60.55 to 60.7 S and 41.7 to 42.6 W, 60.45 to 60.8 S. These bathymetry grids were compiled from a variety of multibeam swath bathymetry data acquired during 12 different cruises (see lineage). The data is available as grids of 50 m resolution in a GMT-compatible (2-D) NetCDF format using geographic coordinates on the WGS84 datum. This grid was compiled in support of the ongoing monitoring efforts in and around Orkney Passage as part of the Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) programme and preceding BAS NC projects, and the Dynamics of the Orkney Passage Outflow (DynOPO) project. Funding was provided by the NERC grants NE/K012843/1 and NE/N018095/1 as well as national capability

  • We present a new bathymetric compilation of the greater South Georgia region, here defined by a bounding box of ~900km (45W to 19W) by ~580km (63S to 50S) and covering an area of 530,000 km2. The region includes the South Georgia shelf, the Shag Rock shelf (to the west of South Georgia), the surrounding continental slopes and adjacent deep sea. This bathymetry grid was compiled from a variety of different data sources including multibeam swath bathymetry collected from scientific cruises undertaken by British Antarctic Survey (BAS), Alfred Wegener Institute (AWI) and the Institute of Geophysics, University of Texas. The grid has been constructed using a layered hierarchy dependent on accuracy of each dataset. The data is available as a 100m resolution GeoTIFF, ESRI ascii grid or KMZ file of elevation data along with a shapefile indicating the spatial coverage of all the contributing datasets. This work was supported by the National Environmental Research Council (grant number NE/L002531/1). For further information regarding the creation of this dataset please refer to doi:10.1038/srep33163.