Keyword

ESA

403 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 403
  • This dataset contains land surface temperatures (LSTs) and their uncertainty estimates from multiple Infra-Red (IR) instruments on satellites in Geostationary Earth Orbit (GEO) and Low Earth Orbiting (LEO) sun-synchronous (a.k.a. polar orbiting) satellites. Satellite land surface temperatures are skin temperatures, which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. LST fields are provided at 3 hourly intervals each day (00:00 UTC, 03:00 UTC, 06:00 UTC, 09:00 UTC, 12:00 UTC, 15:00 UTC, 18:00 UTC and 21:00 UTC). Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and the solar geometry angles. The product is based on merging of available GEO data and infilling with available LEO data outside of the GEO discs. Inter-instrument biases are accounted for by cross-calibration with the IASI instruments on METOP and LSTs are retrieved using a Generalised Split Window algorithm from all instruments. As data towards the edge of the GEO disc is known to have greater uncertainty, any datum with a satellite zenith angle of more than 60 degrees is discarded. All LSTs included have an observation time that lies within +/- 30 minutes of the file nominal Universal Time. Data from the following instruments is included in the dataset: geostationary, Imagers on Geostationary Operational Environmental Satellite (GOES) 12 and GOES 13, Advanced Baseline Imager (ABI) on GOES 16, Spinning Enhanced Visible Infra-Red Imager (SEVIRI) on Meteosat Second Generation (MSG) 1, MSG 2, MSG 3, and MSG 4, Japanese Advanced Meteorological Imager (JAMI) on Multifunctional Transport Satellite MTSAT) 1, and MTSAT 2; and polar, Advanced Along-Track Scanning Radiometer (AATSR) on Environmental Satellite (Envisat), Moderate-resolution Imaging Spectroradiometer (MODIS) on Earth Observation System (EOS) - Aqua and EOS - Terra, Sea and Land Surface Temperature Radiometer SLSTR on Sentinel-3A and Sentinel-3B. However, it should be noted that which instruments contribute to a particular product file depends on depends on mission start and end dates and instrument downtimes. Dataset coverage starts on 1st January 2009 and ends on 31st December 2020. LSTs are provided on a global equal angle grid at a resolution of 0.05° longitude and 0.05° latitude. The dataset coverage is nominally global over the land surface but varies depending on satellite and instrument availability and coverage. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. The dataset was produced by the University of Leicester (UoL) and data were processed in the UoL processing chain. The Geostationary data were produced by the Instituto Português do Mar e da Atmosfera (IPMA) before being merged into the final dataset. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.

  • This dataset is a compilation of time series, together with uncertainties, of the following elements of the global mean sea level budget and ocean mass budget: (a) global mean sea level (b) the steric contribution to global mean sea level, that is, the effect of ocean water density change, which is dominated, on a global average, by thermal expansion (c) the mass contribution to global mean sea level (d) the global glaciers contribution (excluding Greenland and Antarctica) (e) the Greenland Ice Sheet and Greenland peripheral glaciers contribution (f) the Antarctic Ice Sheet contribution (g) the contribution from changes in land water storage (including snow cover). The compilation is a result from the Sea-level Budget Closure (SLBC_cci) project conducted in the framework of ESA’s Climate Change Initiative (CCI). It provides assessments of the global mean sea level and ocean mass budgets. Assessment of the global mean sea level budget means to assess how well (a) agrees, within uncertainties, to the sum of (b) and (c) or to the sum of (b), (d), (e), (f) and (g). Assessment of the ocean mass budget means to assess how well (c) agrees to the sum (d), (e), (f) and (g). All time series are expressed in terms of anomalies (in millimetres of equivalent global mean sea level) with respect to the mean value over the 10-year reference period 2006-2015. The temporal resolution is monthly. The temporal range is from January 1993 to December 2016. Some time series do not cover this full temporal range. All time series are complete over the temporal range from January 2003 to August 2016. For some elements, more than one time series are given, as a result of different assessments from different data sources and methods. Data and methods underlying the time series are as follows: (a) satellite altimetry analysis by the Sea Level CCI project. (b) a new analysis of Argo drifter data with incorporation of sea surface temperature data; an alternative time series consists in an ensemble mean over previous global mean steric sea level anomaly time series. (c) analysis of monthly global gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry mission. (d) results from a global glacier model. (e) analysis of satellite radar altimetry over the Greenland Ice Sheet, amended by results from the global glacier model for the Greenland peripheral glaciers; an alternative time series consists of results from GRACE satellite gravimetry. (f) analysis of satellite radar altimetry over the Antarctic Ice Sheet; an alternative time series consists of results from GRACE satellite gravimetry. (g) results from the WaterGAP global hydrological model. Version 2.2 is an update of the previous Version 2.1. The update concerns the estimates of ocean mass change from GRACE.

  • The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises monthly images of Absorbing Aerosol Index (AAI), using the Multi-Sensor UVAI algorithm, Version 1.4.7. For further details about these data products please see the linked documentation.

  • The European Space Agency's Synthetic Aperture Radar (SAR) instruments have been flown on board ERS-1, ERS-2 and the Advanced SAR (ASAR) on board Envisat. The ERS-1, ERS-2 and Envisat satellites, launched in 1991, 1995 and 2002 respectively, are ESA multi-payload, Earth observation satellites. This dataset contains Synthetic Aperture Radar(SAR) data from the European Remote Sensing satellites ERS-2. The ERS-1 mission began in 1991 and ended in 2000, and ERS-2 and Envisat are still ongoing. SAR provides high resolution images, ocean wave spectra data and wind direction vector data. They are available through the NEODC to UK based students only.

  • The European Space Agency's Synthetic Aperture Radar (SAR) instruments have been flown on board ERS-1, ERS-2 and the Advanced SAR (ASAR) on board Envisat. The ERS-1, ERS-2 and Envisat satellites, launched in 1991, 1995 and 2002 respectively, are ESA multi-payload, Earth observation satellites. This dataset contains Advanced Synthetic Aperture Radar(ASAR) data from the European Remote Sensing satellites ERS-1 and ERS-2, and Advanced SAR data from Envisat. The ERS-1 mission began in 1991 and ended in 2000, and ERS-2 and Envisat are still ongoing. SAR provides high resolution images, ocean wave spectra data and wind direction vector data. They are available through the NEODC to UK based students only.

  • Radio propagation measurements at 40 GHz at Chilbolton, Hampshire for the ESA funded Large Scale Assessment of KA/Q band atmospheric channel using the ALPHASAT TDP5 Propagation beacon signal.

  • This dataset is a compilation of time series, together with uncertainties, of the following elements of the global mean sea level budget and ocean mass budget: (a) global mean sea level (b) the steric contribution to global mean sea level, that is, the effect of ocean water density change, which is dominated, on a global average, by thermal expansion (c) the mass contribution to global mean sea level (d) the global glaciers contribution (excluding Greenland and Antarctica) (e) the Greenland Ice Sheet and Greenland peripheral glaciers contribution (f) the Antarctic Ice Sheet contribution (g) the contribution from changes in land water storage (including snow cover). The compilation is a result from the Sea-level Budget Closure (SLBC_cci) project conducted in the framework of ESA’s Climate Change Initiative (CCI). It provides assessments of the global mean sea level and ocean mass budgets. Assessment of the global mean sea level budget means to assess how well (a) agrees, within uncertainties, to the sum of (b) and (c) or to the sum of (b), (d), (e), (f) and (g). Assessment of the ocean mass budget means to assess how well (c) agrees to the sum (d), (e), (f) and (g). All time series are expressed in terms of anomalies (in millimetres of equivalent global mean sea level) with respect to the mean value over the 10-year reference period 2006-2015. The temporal resolution is monthly. The temporal range is from January 1993 to December 2016. Some time series do not cover this full temporal range. All time series are complete over the temporal range from January 2003 to August 2016. For some elements, more than one time series are given, as a result of different assessments from different data sources and methods. Data and methods underlying the time series are as follows: (a) satellite altimetry analysis by the Sea Level CCI project. (b) a new analysis of Argo drifter data with incorporation of sea surface temperature data; an alternative time series consists in an ensemble mean over previous global mean steric sea level anomaly time series. (c) analysis of monthly global gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry mission. (d) results from a global glacier model. (e) analysis of satellite radar altimetry over the Greenland Ice Sheet, amended by results from the global glacier model for the Greenland peripheral glaciers; an alternative time series consists of results from GRACE satellite gravimetry. (f) analysis of satellite radar altimetry over the Antarctic Ice Sheet; an alternative time series consists of results from GRACE satellite gravimetry. (g) results from the WaterGAP global hydrological model.

  • The European Space Agency's Synthetic Aperture Radar (SAR) instruments have been flown on board ERS-1, ERS-2 and the Advanced SAR (ASAR) on board Envisat. The ERS-1, ERS-2 and Envisat satellites, launched in 1991, 1995 and 2002 respectively, are ESA multi-payload, Earth observation satellites. This dataset contains Synthetic Aperture Radar(SAR) data from the European Remote Sensing satellites ERS-1. The ERS-1 mission began in 1991 and ended in 2000, and ERS-2 and Envisat are still ongoing. SAR provides high resolution images, ocean wave spectra data and wind direction vector data. They are available through the NEODC to UK based students only.

  • This dataset comprises estimates of forest above-ground biomass for the years 2010, 2017 and 2018. They are derived from a combination of Earth observation data, depending on the year, from the Copernicus Sentinel-1 mission, Envisat’s ASAR instrument and JAXA’s Advanced Land Observing Satellite (ALOS-1 and ALOS-2), along with additional information from Earth observation sources. The data has been produced as part of the European Space Agency's (ESA's) Climate Change Initiative (CCI) programme by the Biomass CCI team. This release of the data is version 3. Compared to version 2, this is a consolidated version of the Above Ground Biomass (AGB) maps. This version also includes a preliminary estimate of AGB changes for two epochs. The data products consist of two (2) global layers that include estimates of: 1) above ground biomass (AGB, unit: tons/ha i.e., Mg/ha) (raster dataset). This is defined as the mass, expressed as oven-dry weight of the woody parts (stem, bark, branches and twigs) of all living trees excluding stump and roots 2) per-pixel estimates of above-ground biomass uncertainty expressed as the standard deviation in Mg/ha (raster dataset) In addition, files describing the AGB change between 2018 and the other two years are provided (labelled as 2018_2010 and 2018_2017). These consist of two sets of maps: the standard deviation of the AGB change and a quality flag of the AGB change. Note that the change itself can be simply computed as the difference between two AGB maps, so is not provided directly. Data are provided in both netcdf and geotiff format.

  • The ESA Glaciers Climate Change Initiative (CCI) dataset consists of data produced by the ESA CCI Glaciers Project. The main objective of the Glaciers_cci project is to contribute to the efforts of creating a globally complete and detailed glacier inventory as requested in action T2.1 by GCOS (2006). This activity has two major parts: One is data creation (glacier outlines) in selected and currently still missing key regions, and the other one is in establishing a more consistent framework for glacier entity identification to enhance the integrity and error characterization of the available data sets. As meltwater from glaciers and ice caps provide a substantial contribution to global sea-level rise, the project will also create two additional products in selected key regions, elevation changes and velocity fields