Keyword

Geoscientific information

1931 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
From 1 - 10 / 1931
  • A possible effect of a carbon dioxide leak from an industrial sub-sea floor storage facility, utilised for Carbon Capture and Storage, is that escaping carbon dioxide gas will dissolve in sediment pore waters and reduce their pH. To quantify the scale and duration of such an impact, a novel, field scale experiment was conducted, whereby carbon dioxide gas was injected into unconsolidated sub-sea floor sediments for a sustained period of 37 days. During this time pore water pH in shallow sediment (5 mm depth) above the leak dropped >0.8 unit, relative to a reference zone that was unaffected by the carbon dioxide. After the gas release was stopped, the pore water pH returned to normal background values within a three-week recovery period. Further, the total mass of carbon dioxide dissolved within the sediment pore fluids above the release zone was modelled by the difference in DIC between the reference and release zones. Results showed that between 14 and 63% of the carbon dioxide released during the experiment could remain in the dissolved phase within the sediment pore water. This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Peter Taylor et. al. Doi:10.1016/j.ijggc.2014.09.006.

  • Data derived from NERC grant NE/I024127/1 1) 36Cl data and supporting chemistry. This folder contains the 36Cl concentration data, data on sample locations on fault planes, major and trace element concentrations, and similar data for upper slope samples. 2) Depth versus density data for trenches in colluvium. This folder contains measurements of weights and volumes of colluvial material removed from trenches for some of the 36Cl sites. These data are used to calculate colluvial densities to inform modelling of the 36Cl data. 3) Field Site Documentation. This folder contains field data and field photographs and movies of the sample sites. It also contains a file that summarises interpretations of the data in this folder, to provide numerical values needed to support modeling the 36Cl data to recover fault slip histories. 4) Google Earth Files to locate sample sites. This folder contains kmz files for Google Earth to locate the sample sites. 5) Terrestrial LiDAR data for each 36Cl sample sites. This folder contains Terrestrial LiDAR data (from a LiDAR on a tripod).

  • Many of the research results from the SACS and CO2STORE projects are published in the scientific literature but in a somewhat fragmented form. This report consolidates some of the key findings into a manual of observations and recommendations relevant to underground saline aquifer storage, aiming to provide technically robust guidelines for effective and safe storage of CO2 in a range of geological settings. This will set the scene for companies, regulatory authorities, nongovernmental organisations, and ultimately, the interested general public, in evaluating possible new CO2 storage projects in Europe and elsewhere. The report can be downloaded from http://nora.nerc.ac.uk/2959/.

  • It is now generally accepted that anthropogenic CO2 emissions are contributing to the global rise in atmospheric CO2 concentrations. One possibility for reducing carbon dioxide emissions is to remove it from the flue gases of coal-fired power stations and dispose of it in underground geological reservoirs, possibly offshore in the North Sea. The feasibility of this option has been studied in detail by a consortium of European partners. As part of this study, natural occurrences of carbon dioxide were identified and preliminary information from these was obtained. The best characterised are found in the United States where the carbon dioxide reserves are exploited for use in tertiary enhanced oil recovery (EOR) programs in the Texas oilfields. The carbon dioxide reserves occur in geological structures and lithologies which are similar to those present in the North Sea. As such, these fields offer an ideal natural analogue for the disposal of carbon dioxide, since the interactions with groundwaters and reservoir lithologies have occurred on both spatial and temporal scales relevant to geological processes. Those carbon dioxide fields currently being exploited have already been studied to a limited extent by the oil companies involved. However, further study is required to provide information on the potential effects that disposing of large quantities of carbon dioxide might have on groundwaters and reservoir quality. In addition, more detailed information will be obtained on the interactions which occur during EOR using carbon dioxide. This paper presents data on some of the natural carbon dioxide fields, and compares the effects of these natural fluid-rock interactions with those observed in laboratory experiments performed to establish what reactions occur during the geological disposal of carbon dioxide. doi:10.1016/0196-8904(95)00309-6. http://www.sciencedirect.com/science/article/pii/0196890495003096.

  • This poster was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-14. The data consists of a poster presented at the UKCCSRC biannual meeting in Cranfield, April 20th 2015. The poster describes an overview of work carried-out on behalf of the 'Fault seal controls on CO2 storage capacity in aquifers' project funded by the UKCCS Research Centre, grant number UKCCSRC-C1-14. Three main work strands are briefly described: 1) The Captain Sandstone aquifer is studied for the geomechanical integrity of faults, 2) Shallow gas accumulations in the Netherlands sector of the Southern North Sea provide an opportunity to study their coincidence with faulting while commonalities in the nature of the faults provide an indication of factors that might lead to fault leakage in CO2 storage sites. 3) The Fizzy gas field which is naturally rich in CO2 is studied for its fault seal potential as a natural analogue for fault-bounded storage sites.

  • This poster on the UKCCSRC Call 1 project Determination of water solubility limits in CO2 mixtures to deliver water specification levels for CO2 transportation was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-21. Studies of the phase behaviour and water solubility of pure and impure CO2 are of great relevance to the transport phase of the carbon capture and storage (CCS) process. For transport through carbon steel pipelines, CO2 and any impurities present must be present as a single phase to avoid corrosion, and subsequent loss of pipeline integrity. Trace impurities such as H2 and N2 have been shown to alter the phase behaviour of the CO2 at high pressure. Understanding the effect of these impurities on the solubility of H2O in CO2 is vital to confirm the safety and viability of CO2 transport through carbon steel pipelines.

  • The aa index is a simple global geomagnetic activity index, with units of 1 nT (nanotesla), which is produced from the K indices from two approximately antipodal observatories. At present these are Hartland observatory in the UK and Canberra observatory in Australia. The main advantage in using aa indices for research purposes is that the time series spans further back (to 1868) than any of the other planetary indices time series.Also, up to date values are produced and made available weekly, giving nearer to real time availability than any other planetary index. In between the weekly updates, BGS calculates estimated aa indices, providing real time "nowcasts" which are updated on an hourly basis. These estimates are clearly marked with the letters "Est". Although calculated by the same method, the aa indices available on this service are not the definitive values. These are published by the International Service for Geomagnetic Indices, CRPE/CNET - CNRS, 4 Avenue de Neptune, F-94107 Saint Maur, Cedex, France.

  • Dupont, Valerie (2016) Data for "Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor" in International Journal of Hydrogen Energy. University of Leeds. Data file containing datasets used to generate the figures and tables in the paper. [Dataset] https://doi.org/10.5518/126. [Publication] http://doi.org/10.1016/j.ijhydene.2016.11.093

  • The data consists of a short project update for the 2015/16 annual report and the final report for the project. The update describes work carried-out on behalf of the 'Fault seal controls on CO2 storage capacity in aquifers' project funded by the UKCCS Research Centre, grant number UKCCSRC-C1-14. The report details the latter stages of the project, the final conclusions and results dissemination throughout the project.

  • This poster on the UKCCSRC Call 1 project Experimental investigation with PACT facility and CFD modelling of oxy-coal combustion with recycling real flue gas was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-27. Oxy-coal combustion technology has gained confidence and maturity especially within the last decade (Santos S. 2012) compared to the much earlier studies (Kimura et al., 1995; Wang et al., 1988). However, there are still a number of research challenges associated with flue gas recycling, gas clean-up and plant scale tools and models. Flue gas recycling affects the purity of CO2, oxygen mixing, and ignition of coal particles and flame stability. There is lack of experimental data with real flue gas recycling or treated vent gas recycling, which is one of the available options to achieve the target of zero emissions (Hack et al., 2011), at pilot-scale for the validation of CFD models. The project focuses on the following tasks: • Experimental investigation of oxy-coal combustion, ignition and flame stability with the 250kWth PACT Oxy-Coal Combustion furnace with real and simulated flue gas recycling • Experimental investigation of oxy-coal combustion ignition and flame stability with a laboratory visual drop tube furnace • CFD simulation of the 250kWth PACT Oxy-coal combustion furnace.