Geoscientific information
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
-
Controlled CO2 release experiments and studies of natural CO2 seeps have been undertaken at sites across the globe for CCS applications. The scientific motivation, experimental design, baseline assessment and CO2 detection and monitoring equipment deployed vary significantly between these study sites, addressing questions including impacts on benthic communities, testing of novel monitoring technologies, quantifying seep formation/style and determining CO2 flux rates. A review and synthesis of these sites studied for CCS will provide valuable information to: i. Enable the design of effective monitoring and survey strategies ii. Identify realistic site-specific environmental and ecosystem impact scenarios iii. Rationalise regulatory definitions with what is scientifically likely or achievable iv. Guide novel future scientific studies at natural or artificial release sites. Two global databases were constructed in Spring 2013, informed by a wide literature review and, where appropriate, contact with the research project leader. i. Artificial CO2 release sites ii. Natural CO2 seeps studied for CCS purposes The location and select information from each of these datasets are intended to be displayed as separate GoogleMap files which can be embedded in the QICS or UKCCSRC web server. These databases are not expected to be complete. Information should be added as more publications or become available or more case studies emerge or are set up. To facilitate this process, a contact email should be included beneath the map to allow viewers to recommend new or overlooked study sites for the dataset. Grant number: UKCCSRC-C1-31. These data are currently restricted.
-
It is now generally accepted that anthropogenic CO2 emissions are contributing to the global rise in atmospheric CO2 concentrations. One possibility for reducing carbon dioxide emissions is to remove it from the flue gases of coal-fired power stations and dispose of it in underground geological reservoirs, possibly offshore in the North Sea. The feasibility of this option has been studied in detail by a consortium of European partners. As part of this study, natural occurrences of carbon dioxide were identified and preliminary information from these was obtained. The best characterised are found in the United States where the carbon dioxide reserves are exploited for use in tertiary enhanced oil recovery (EOR) programs in the Texas oilfields. The carbon dioxide reserves occur in geological structures and lithologies which are similar to those present in the North Sea. As such, these fields offer an ideal natural analogue for the disposal of carbon dioxide, since the interactions with groundwaters and reservoir lithologies have occurred on both spatial and temporal scales relevant to geological processes. Those carbon dioxide fields currently being exploited have already been studied to a limited extent by the oil companies involved. However, further study is required to provide information on the potential effects that disposing of large quantities of carbon dioxide might have on groundwaters and reservoir quality. In addition, more detailed information will be obtained on the interactions which occur during EOR using carbon dioxide. This paper presents data on some of the natural carbon dioxide fields, and compares the effects of these natural fluid-rock interactions with those observed in laboratory experiments performed to establish what reactions occur during the geological disposal of carbon dioxide. doi:10.1016/0196-8904(95)00309-6. http://www.sciencedirect.com/science/article/pii/0196890495003096.
-
The underground disposal of industrial quantities of CO2 is entirely feasible. Cost is the main barrier to implementation. The preferred concept is disposal into porous and permeable reservoirs capped by a low permeability seal, ideally, but not necessarily, at depths of around 800 metres or more, where the CO2 will be in a dense phase. New concepts and refined reservoir models are continually emerging. As more regional estimates are carried out it appears that there will be ample underground storage capacity in the worlds sedimentary basins. Storage will be stable over geological timescales. The (remote) possibility of an escape of CO2 from a storage reservoir onshore merits further investigation and modelling. It would be highly desirable to learn as much as possible from the operators of the new CO2 disposal schemes arising from natural gas processing in offshore gas fields, as few such opportunities may arise. doi:10.1016/S0196-8904(96)00268-3. http://www.sciencedirect.com/science/article/pii/S0196890496002683
-
In January 1993, as part of the Joule II Non-nuclear Energy Research Programme, the European Commission initiated a two year study of the potential for the disposal of industrial quantifies of carbon dioxide underground, with a view to reducing emissions to the atmosphere. The participants in the study were the British Geological Survey (UK), TNO Institute of Applied Geoscience (The Netherlands), BRGM (France), CRE Group Ltd (UK), IKU Petroleum Research (Norway), RWE AG (Germany), University of Sunderland Renewable Energy Centre (UK) and Statoil (Norway). The objective of the study was to examine whether carbon dioxide emissions from large point sources such as power stations, could be disposed of safely, economically and with no adverse effects on man and the environment. Project No. CT92-0031.
-
The UK Government has set targets for the reduction of CO2 emissions of 80 % by 2050. Post-combustion capture of CO2 from power plants is key if we are to achieve these targets. Post-combustion CO2 capture is challenging due to the low concentration of CO2 in the waste stream and the presence of impurities (H2O, NOx, SOx, etc). Post-combustion capture adds energetic cost via the requirement to capture and compress the CO2. Amine-based scrubbing processes are being evaluated for post-combustion CO2 capture. This is a costly process, and the amines are corrosive. Other candidate technologies include physical adsorption into solid sorbents coupled with pressure-swing or temperature-swing adsorption/desorption. In principle this may lower the energy overhead, but the volume of sorbent required is extremely large, limiting the range of sensible materials. Membrane-based processes have potential advantages over the above. In particular, there are no losses due to heat required to regenerate and release CO2 from the spent sorbent or solvent, and the footprint for the technology and amount of material required is comparatively small. Here, we will develop advanced mixed matrix membranes (MMMs) technology utilising organic fillers, rather than inorganic fillers, that could be cost-effectively fitted to power plants to separate and capture CO2. There has been much research on inorganic-organic MMMs, using fillers such as zeolites and MOFs. However, it is challenging to achieve a homogeneous dispersion of the inorganic filler particles in the polymer matrix. This is exacerbated by the lack of compatibility between most fillers, which are frequently crystalline inorganic or metal-organic materials, and the membrane polymers, which are invariably amorphous and organic. We build therefore on our unique report of organic-organic MMM (Angew Chem Int Ed, 2013) , where excellent dispersion of the organic filler was found and there was good adhesion between the organic polymer and the organic filler, both of which are predominantly aromatic structures. We address this by bringing together two UK groups who have pioneered in the development of novel porous membranes (Budd) and new microporous organic materials (Adams, Cooper). Grant number: EP/M001342/1.
-
In January 1993, as part of the Joule II Non-nuclear Energy Research Programme, the European Commission initiated a two year study of the potential for the disposal of industrial quantifies of carbon dioxide underground, with a view to reducing emissions to the atmosphere. The participants in the study were the British Geological Survey (UK), TNO Institute of Applied Geoscience (The Netherlands), BRGM (France), CRE Group Ltd (UK), IKU Petroleum Research (Norway), RWE AG (Germany), University of Sunderland Renewable Energy Centre (UK) and Statoil (Norway). The objective of the study was to examine whether carbon dioxide emissions from large point sources such as power stations, could be disposed of safely, economically and with no adverse effects on man and the environment. doi:10.1016/0196-8904(95)00308-8. http://www.sciencedirect.com/science/article/pii/0196890495003088
-
This poster on the UKCCSRC Call 2 project, Advanced Sorbents for CCS via Controlled Sintering, was presented at the Cardiff Biannual_10.09.14. Grant number: UKCCSRC-C2-206.
-
This report give detailed results, conclusions and recommendations of the Joule II project CT92-0031. 'The Underground Disposal of Carbon Dioxide'. A summary of the results of the project is given in the Summary Report of the project which was compiled on 28 February 1995. The report is available at http://nora.nerc.ac.uk/502763/.
-
The RISCS (Research into Impacts and Safety in CO2 Storage) project assessed the potential environmental impacts of leakage from geological CO2 storage. Consideration was given to possible impacts on groundwater resources and on near surface ecosystems both onshore and offshore. The aim of the project was to assist storage site operators and regulators in assessing the potential impacts of leakage so that these could be considered during all phases of a storage project (project design, site characterisation, site operation, post-operation and site abandonment, and following transfer of liability back to the state). A secondary objective was to inform policy makers, politicians and the general public of the feasibility and long-term benefits and consequences of large-scale CO2 capture and storage (CCS) deployment. RISCS was a 4 year project supported by the European Commission under the 7th Framework Programme. Project website http://www.riscs-co2.eu.
-
This presentation on the EPSRC project, CONTAIN, was presented at the Cranfield Biannual, 21.04.15. Grant number: EP/K036025/1.