From 1 - 4 / 4
  • These data files represent simulations of hydrated cation vacancies in the mantle mineral forsterite (Mg2SiO4) undertaken using the CASTEP atomic scale simulation code ( Results from these simulations allow the structure relative stability of different defect configurations to be compared. Three types of cation vacancies are considered (M1, M2 and Si) each decorated by hydrogen in order to charge balance the system. For M1 and M2 this results in multiple configurations (with hydrogen bonded to different oxygen atoms around the vacant site). For Si there is only one configuration as all four oxygen atoms are bonded to hydrogen for the charge neutral defect. For each configuration input files detail the initial atomic structure of the defect along with simulation parameters. Output files record the progress of the simulation, the final atomic structure, the energy of this structure, and various predicted properties of the structure. Only ASCII output data is included as binary data created by CASTEP is not intended to be portable, and can easily be recreated using the ASCII files.

  • H2 adsorption data on sub-bituminous coal as a function of pressure. Hydrogen flooding of a coal core. Micro CT imaging of the effect on coal swelling after hydrogen injection. Hydrogen is trapped, and no swelling is observed indicating that coal might be a good candidate for the storage of hydrogen.

  • The data was generated from a range of laboratory experiments where a range of silicate rocks (granite, basalt, peridotite) were crushed in oxygen-free conditions, deoxygenated water added, and the generation of hydrogen gas and hydrogen peroxide followed over a week. Results were compared to rock-free controls. The data was collected to provide insight into the production of oxidants (such as hydrogen peroxide) along tectonically active regions of the subsurface, and how the oxidants might influence subsurface microbiology.

  • This dataset comprises raw carbon, oxygen and hydrogen stable isotope data on water (precipitation and terrestrial) and plant cellulose from Empodisma-dominated peatlands throughout New Zealand. This data has been published in two open access papers: Amesbury, M. J., Charman, D. J., Newnham, R. M., Loader, N. J., Goodrich, J. P., Royles, J., Campbell, D. I., Roland, T. P. and Gallego-Sala, A. V. 2015. Carbon stable isotopes as a palaeoclimate proxy in vascular plant dominated peatlands. Geochimica et Cosmochimica Acta 164, 161-174. Amesbury, M. J., Charman, D. J., Newnham, R. M., Loader, N. J., Goodrich, J. P., Royles, J., Campbell, D. I., Keller, E. D., Baisden, W. T., Roland, T. P. and Gallego-Sala, A. V. 2015. Can oxygen stable isotopes be used to track precipitation moisture source in vascular plant dominated peatlands? Earth and Planetary Science Letters 430, 149-159.