Keyword

Land Use

34 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Resolution
From 1 - 10 / 34
  • This view shows a 1km resolution raster version of the Land Cover Map 2007 for Great Britain. The data consists of 23 bands. Each band represents a target class, broadly representing a Broad Habitat, and within the band each 1km pixel represents a percentage cover value of that class. The dataset is part of a series of data products produced by the Centre for Ecology & Hydrology known as LCM2007. LCM2007 is a parcel-based thematic classification of satellite image data covering the entire United Kingdom. The map updates and upgrades the Land Cover Map of Great Britain (LCMGB) 1990 and LCM2000. Like the earlier 1990 and 2000 products, LCM2007 is derived from a computer classification of satellite scenes obtained mainly from Landsat, IRS and SPOT sensors and also incorporates information derived from other ancillary datasets. LCM2007 was classified using a nomenclature corresponding to the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompasses the entire range of UK habitats. In addition, it recorded further detail where possible. The series of LCM2007 products includes vector and raster formats, with a number of different versions containing varying levels of detail and at different spatial resolutions.

  • This data contains values of bare sand area, modelled wind speed, aspect and slope at a 2.5 m spatial resolution for four UK coastal dune fields, Abberfraw (Wales), Ainsdale (England), Morfa Dyffryn (Wales), Penhale (England). Data is stored as a .csv file. Data is available for 620,756.25 m2 of dune at Abberfraw, 550,962.5 m2 of dune at Ainsdale, 1,797,756.25 m2 of dune at Morfa Dyffryn and 2,275,056.25 m2 of dune at Penhale. All values were calculated from aerial imagery and digital terrain models collected between 2014 and 2016. For each location, areas of bare sand were mapped in QGIS using the semi-automatic classification plugin (SCP) and the minimum distance algorithm on true-colour RGB images. The slope and aspect of the dune surface at each site was calculated in QGIS from digital terrain models. Wind speed at 0.4 m above the surface of the digital terrain model at each site was calculated using a steady state computational fluid dynamics (CFD). Data was collected to statistically test the relationship between bare sand and three abiotic physical factors on coastal dunes (wind speed, dune slope and dune slope aspect). Vertical aerial imagery was sourced from EDINA Aerial Digimap Service and digital terrain models from EDINA LIDAR Digimap Service. Wind speed data was generated and interpreted by Dr Thomas Smyth (University of Huddersfield). Full details about this dataset can be found at https://doi.org/10.5285/972599af-0cc3-4e0e-a4dc-2fab7a6dfc85

  • This dataset shows potential carbon storage as modelled for the urban areas of Milton Keynes/Newport Pagnell, Bedford, and Luton/Dunstable, UK. The modelling approach used the ‘InVEST (Integrated Valuation of Ecosystem Services and Trade-offs) 3.1.0’ ecosystem service model suite, raster land cover maps at two spatial resolutions (5 m and 25 m) and published literature values for carbon storage by land cover. The resulting data are presented in the form of two ‘GeoTIFF’ raster map files (and associated metadata and spatial information files required by software) that can be viewed and manipulated in Geographic Information Software. The units are kg C per square meter. The purpose of the modelling was to help assess and visualise the value that urban green space represents to urban residents and natural systems in just one of many ecosystem services. This research was conducted as part of the larger 'Fragments, Functions, Flows and Urban Ecosystem Services' (F3UES) programme. Detailed methods and results of this analysis are published in: Grafius DR, Corstanje R, Warren PH, et al (2016) The impact of land use/land cover scale on modelling urban ecosystem services. Landsc Ecol 31:1509–1522. doi: 10.1007/s10980-015-0337-7. Full details about this dataset can be found at https://doi.org/10.5285/9209af2c-24f6-4e37-98fe-550032e97a2c

  • The dataset contains chemistry data from streambed porewater (10 and 20 cm) and surface water, as well as nitrogen chemistry data at 2.5 cm resolution within the upper 15 cm of the streambed. The dataset includes concentrations of dissolved organic carbon (DOC), carbon dioxide, methane, ammonium, nitrate, nitrite and nitrous oxide, and isotopic ratios of δ13CCO2, δ15NNO3+NO2 and δ18ONO3+NO2. Also included are measurements of dissolved oxygen and temperature. Samples were collected from three reaches within the stream, an upstream sandy reach, a mid-stream sandy reach and a downstream gravel reach. The work was carried out with Natural Environment Research Council (NERC) funding through a PhD (NERC award number 1602135), grant (NE/L004437/1) and Life Sciences Mass Spectrometry Facility grant (CEH_L102_05_2016). Full details about this dataset can be found at https://doi.org/10.5285/00601260-285e-4ffa-b381-340b51a7ec50

  • The dataset contains model output from an agricultural land use model at kilometre scale resolution over Great Britain (GB) for four different climate and policy scenarios. Specifically, arable area is modelled for with or without a climate tipping point (standard (medium emissions scenario SRES-A1B) climate change vs Atlantic Meridional Overturning Circulation (AMOC) collapse) and with or without widespread irrigation use for farmers from 2000 to 2089. Full details about this dataset can be found at https://doi.org/10.5285/e1c1dbcf-2f37-429b-af19-a730f98600f6

  • This dataset for the UK, Jersey and Guernsey contains the Corine Land Cover (CLC) for 2012 (CLC2012). This dataset has been created from combining the 2012 land cover layers from the individual CLC files for the UK, Jersey and Guernsey. CLC is a dataset produced within the frame of the Initial Operations of the Copernicus programme (the European Earth monitoring programme previously known as GMES) on land monitoring. CLC provides consistent information on land cover and land cover changes across Europe. This inventory was initiated in 1985 (initial year 1990) and then established a time series of land cover information with updates in 2000 and 2006 the last one being the 2012 reference year. CLC products are based on the analysis of satellite images by national teams of participating countries - the EEA member and cooperating countries - following a standard methodology and nomenclature with the following base parameters: - 44 classes in the hierarchical three level Corine nomenclature; - Minimum mapping unit (MMU) for status layers is 25 hectares; - Minimum width of linear elements is 100 metres; The resulting national land cover inventories are further integrated into a seamless land cover map of Europe. Land cover and land use (LCLU) information is important not only for land change research, but also more broadly for the monitoring of environmental change, policy support, the creation of environmental indicators and reporting. CLC datasets provide important datasets supporting the implementation of key priority areas of the Environment Action Programmes of the European Union as protecting ecosystems, halting the loss of biological diversity, tracking the impacts of climate change, assessing developments in agriculture and implementing the EU Water Framework Directive, among others. Full details about this dataset can be found at https://doi.org/10.5285/32533dd6-7c1b-43e1-b892-e80d61a5ea1d

  • Data on resilience of wheat yields in England, derived from the annual Defra Cereals and Oilseeds production survey of commercial farms. The data presented here are summarised over a ten-year time-series (2008-2017) at 10km x10km grid cell (hectad) resolution. The data give the mean yield, relative yield, yield stability and resistance to an extreme event (the poor weather of 2012), for all hectads with at least one sampled farm holding in each year of the time-series (i.e. the minimum data required to calculate the resilience metrics). These metrics were calculated to explore the impact of landscape structure on yield resilience. The data also give the number of samples per year per hectad, so that sampling biases can be explored and filtering applied. No hectads are included that contain data from <9 holdings across the time series (the minimum level required by Defra to maintain anonymity is <5). The data were created under the ASSIST (Achieving Sustainable Agricultural Systems) project by staff at the UK Centre for Ecology & Hydrology to enable exploration of the impacts of agriculture on the environment and vice versa, enabling farmers and policymakers to implement better, more sustainable agricultural practices. Full details about this dataset can be found at https://doi.org/10.5285/7dbcee0c-00ca-4fb2-93cf-90f2a5ca37ea

  • Hydrological monitoring data in this data collection result from dipwells installed at studied flood defence scheme, where electronic gauges monitored water-table fluctuations over time. Ecological data contain species sighting records of birds, butterflies, dragonflies and damselflies recorded during site visits to flood defence schemes in summer 2007. These data aim to show the relationship between water regimes and habitat potential.The study is part of the NERC Rural Economy and Land Use (RELU) programme. Agricultural Flood Defence Schemes in floodplain and coastal areas were once an important element of Government support for farmers in Britain. More recently, however, changing priorities in the countryside, concern about environmental quality and perceptions of increased flood risk in lowland areas, in part linked to climate change, have promoted a re-appraisal of land management options and policies for floodplain areas. Eight agricultural flood defence schemes, previously studied by the research team in the 1980s, have been re-examined to identify and explain changes in land and water management that have occurred over the last 40-years. This involved stakeholder and institutional analysis, farmer interviews, ecological surveys, field observations and modelling of hydrological and related ecological processes. Generic land use scenarios have been developed to consider management options that focus on single objectives, such as maximising agricultural production, maximising biodiversity and minimising flood risk in the catchment. The scenarios examined the impacts of changes in rural land use on ecosystem goods and services. The influence of agricultural policy, interacting with farmer circumstances and motivation, on land use has also been explored. The project also evaluated the impacts of the summer 2007 floods on agriculture and rural communities. The results revealed opportunities for achieving a wide range of benefits relating to farming, biodiversity, amenity, flood management, water quality and the wider rural economy. The study informed strategies for floodplain management, helping to develop approaches that are appealing to major stakeholders. Historical data on the studied flood defence schemes, farm business survey data and interviews with farmers at flood defence schemes, and interviews with farmers and rural businesses affected by summer floods in 2007 are available at the UK Data Archive under study number 6377 (see related resources). Further documentation for this study may be found through the RELU Knowledge Portal and the project's ESRC funding award web page (see online resources).

  • The study is part of the NERC Rural Economy and Land Use (RELU) programme. This project investigated the links between quality food production and biodiversity protection by asking the question: can production systems that use and maintain biodiverse natural grasslands, translate that into a source of additional product value in the production of meat and cheese and therefore benefit rural economies? The aim was to inverse the conventional understanding of landscape or environmental quality as the outcome of well managed farming to explore the idea of natural grassland biodiversity as an input into more sustainable farming and as an integral component of product quality. This dataset consists of the grassland botanical composition and chemical soil analyses resulting from this project. A botanical field survey of a number of sample grazing sites on selected case study farms records the plant species present within a representative area of phytosociologically homogeneous vegetation and the percentage cover that each species vertically projects onto the ground surface. Soil analyses of sample sites determines soil composition, pH and minerals. Land management, consumer opinion and nutritional data from this study are available at the UK Data Archive under study number 6159 (see online resources). Further documentation for this study may be found through the RELU Knowledge Portal and the project's ESRC funding award web page (see online resources).

  • [THIS DATASET HAS BEEN WITHDRAWN]. This data product maps pesticide applications across England and Wales. It is produced at a 1km resolution with units of kg active ingredient applied per year. Pesticide application rates (kg/km2/yr) are calculated for each of the crops grown in each 1km square, with the total application calculated by multiplying the estimated rates by the area of each crop in the square. The product provides application estimates for 129 different active ingredients including herbicides, insecticides, molluscicides and fungicides. Uncertainty maps are produced alongside each active ingredient map to quantify the level of confidence in the estimated applications. Uncertainty is quantified using the distribution of each parameter estimate obtained from the modelling method and is expressed relative to the total application. The product is a snapshot of average applications between 2012 and 2016. The product builds upon the Centre for Ecology & Hydrology (CEH) Land Cover® Plus: Crops product. An average of CEH Land Cover® Plus: Crops 2015, 2016 and 2017 is used to reflect average crop coverage at the 1km resolution. Temporal variation in pesticide application is not modelled explicitly but is reflected in the uncertainty maps. This data product was funded by the Natural Environment Research Council (NERC) under research programme NE/N018125/1 Achieving Sustainable Agricultural Systems (ASSIST). ASSIST is an initiative jointly supported by NERC and the Biotechnology and Biological Sciences Research Council (BBSRC). Full details about this dataset can be found at https://doi.org/10.5285/a72f8ce8-561f-4f3a-8866-5da620c0c9fe