Keyword

MODIS

84 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 84
  • This dataset contains data from the MODIS (Moderate Resolution Imaging Spectroradiometer) cloud product, collocated to wind-advected ship locations and shipping emissions. Most importantly, it includes effective droplet radii, calculated droplet number concentration, liquid water path, and cloud optical depth for locations where clouds have been polluted by shipping and to either side of a ship trajectory. Cloud data in the trajectory is labelled with the variable name only, data on either side additionally with [property]_1 and [property]_3 for the western and eastern side, respectively. The data is ungridded and comes in the form of csv files. It covers the period of 2014-2019. The dataset is the product of three data sources: AIS data giving ship locations, ERA5 winds used to advect the emissions up to the time of the Aqua and Terra overpasses, as well as the level-2 cloud product MOD06. This data was collected for the study of shipping aerosols' effect on marine liquid clouds, in particular when the emissions do not produce a satellite-visible ship track, which could be hand-logged.

  • These data are a copy of MODIS data from the NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC). The copy is potentially only a subset. Below is the description from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD19A2 MCD19A2 is the shortname for the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm-based Level-2 gridded (L2G) aerosol optical thickness over land surfaces product. Derived using both Terra and Aqua MODIS inputs, this L2 product is produced daily at 1 km pixel resolution. This product helps generate a number of atmospheric and geometric properties/parameters that are used to produce another facet of the MAIAC algorithm: the land surface Bidirectional Reflectance Factor. The MCD19A2 product contains two data groups with the following Science Data Set parameters: Grid500m groupAerosol Optical Depth at 047 micronAerosol Optical Depth at 055 micronAOD Uncertainty at 047 micronFine-Mode Fraction for OceanColumn Water Vapor in cm liquid waterAOD QAAOD Model (Regional background model used)Injection Height (Smoke injection height over local surface height)Grid5km groupCosine of Solar Zenith AngleCosine of View Zenith AngleRelative Azimuth AngleScattering AngleGlint Angle The MCD19A2 product has achieved Stage-3 validation. Shortname: MCD19A2 , Platform: Combined Aqua Terra , Instrument: MODIS , Processing Level: Level-2 Tiled , Spatial Resolution: 1 km , Temporal Resolution: daily , ArchiveSets: 6 , Collection: MODIS Collection 6 (ArchiveSet 6) , PGE Number: PGE113 , File Naming Convention: MCD19A2.AYYYYDDD.hHHvVV.CCC.YYYYDDDHHMMSS.hdf YYYYDDD = Year and Day of Year of acquisition hHH = Horizontal tile number (0-35) vVV = Vertical tile number (0-17) CCC = Collection number YYYYDDDHHMMSS = Production Date and Time , Citation: Alexi Lyapustin - NASA GSFC, Yujie Wang - Univeristy of Maryland Baltimore County and MODAPS SIPS - NASA. (2015). MCD19A2 MODIS/Terra+Aqua Aerosol Optical Thickness Daily L2G Global 1km SIN Grid. NASA LP DAAC. http://doi.org/10.5067/MODIS/MCD19A2.006 , Keywords: Atmospheric Correction, MODIS, MAIAC, Bidirectional Surface reflectance, Aerosols

  • This dataset contains cloud droplet number concentrations (CDNC), gridded to 1 by 1 degree resolution using a variety of sampling methods to select valid retrievals. Data from the MODIS (Moderate resolution imaging spectroradiometer) instruments on both the Terra (morning overpass) and Aqua (Afternoon overpass) satellites are available (indicated by a T or A in the filename). This product is gridded using the MODIS collection 6 definition of a day. These sampling methods have been compared against multiple flight campaigns, see Gryspeerdt et al., The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data. Atmos. Meas. Tech. 2022." Errata: The latitude values in these files are currently inverted, resulting in the data in the files appearing 'upside-down'. As a work-around, the data arrays can be reversed along the latitude axis. Corrected versions of the files will be uploaded shortly.'

  • This dataset contains Daily Snow Cover Fraction (snow on ground) from MODIS, produced by the Snow project of the ESA Climate Change Initiative programme. Snow cover fraction on ground (SCFG) indicates the area of snow observed from space on land surfaces, in forested areas corrected for the transmissivity of the forest canopy. The SCFG is given in percentage (%) per pixel. The global SCFG product is available at about 1 km pixel size for all land areas, excluding Antarctica and Greenland ice sheets. The coastal zones of Greenland are included. The SCFG time series provides daily products for the period 2000 – 2019. The SCFG product is based on Moderate resolution Imaging Spectroradiometer (MODIS) data on-board the Terra satellite. The retrieval method of the snow_cci SCFG product from MODIS data has been further developed and improved based on the ESA GlobSnow approach described by Metsämäki et al. (2015) and complemented with a pre-classification module developed by ENVEO. For the SCFG product generation from MODIS, multiple reflective and emissive spectral bands are used. In a first step, clouds are masked using an adapted version of the Simple Cloud Detection Algorithm version 2.0 (SCDA2.0) (Metsämäki et al., 2015). All cloud free pixels are then used for the snow extent mapping, using spectral bands centred at about 550 nm and 1.6 µm, and an emissive band centred at about 11 µm. The snow_cci snow cover mapping algorithm is a two-step approach: first, a strict pre-classification is applied to identify all cloud free pixels which are certainly snow free. For all remaining pixels, the snow_cci SCFG retrieval method is applied. Improvements to the GlobSnow algorithm implemented for snow_cci version 1 include (i) the utilisation of background and forest reflectance maps derived from statistical analyses of MODIS time series replacing the constant values for snow free ground and snow free forest used in the GlobSnow approach, and (ii) the usage of a global forest transmissivity map developed and created within snow_cci based on forest density from Hansen et al. (2013) and forest type layers from Land Cover CCI (Defourny, 2019). The forest transmissivity map is used to account for the shading effects of the forest canopy and estimate also in forested areas the fractional snow cover on ground. Permanent snow and ice, and water areas are masked based on the Land Cover CCI data set of the year 2000. Both classes were separately aggregated to the pixel spacing of the SCFG product. Water areas are masked if more than 30 percent of the pixel is classified as water, permanent snow and ice areas are masked if more than 50 percent are identified as such areas in the aggregated map. The product uncertainty for observed land pixels is provided as unbiased root mean square error (RMSE) per pixel in the ancillary variable. The SCFG product is aimed to serve the needs for users working in the cryosphere and climate research and monitoring activities, including the detection of variability and trends, climate modelling and aspects of hydrology, meteorology, and biology. ENVEO is responsible for the SCFG product development and generation from MODIS data, SYKE supported the development. There are a few days without any MODIS acquisitions in the years 2000, 2001, 2002, 2003, 2008, 2016 and 2018. On several days in the years 2000 to 2006, and on a few days in the years 2012, 2015 and 2016, the acquired MODIS data have either only limited coverage, or some of the MODIS data were corrupted during the download process. For these days, the SCFG products are available but have data gaps.

  • This dataset contains Daily Snow Cover Fraction of viewable snow from the MODIS satellite instruments, produced by the Snow project of the ESA Climate Change Initiative programme. Snow cover fraction viewable (SCFV) indicates the area of snow viewable from space over all land surfaces. In forested areas this refers to snow viewable on top of the forest canopy. The SCFV is given in percentage (%) per pixel. The global SCFV product is available at about 1 km pixel size for all land areas, excluding Antarctica and Greenland ice sheets. The coastal zones of Greenland are included. The SCFV time series provides daily products for the period 2000 – 2019. The SCFV product is based on Moderate resolution Imaging Spectroradiometer (MODIS) data on-board the Terra satellite. The retrieval method of the snow_cci SCFV product from MODIS data has been further developed and improved based on the ESA GlobSnow approach described by Metsämäki et al. (2015) and complemented with a pre-classification module developed by ENVEO. For the SCFV product generation from MODIS, multiple reflective and emissive spectral bands are used. In a first step, clouds are masked using an adapted version of the Simple Cloud Detection Algorithm version 2.0 (SCDA2.0) (Metsämäki et al., 2015). All cloud free pixels are then used for the snow extent mapping, using spectral bands centred at about 550 nm and 1.6 µm, and an emissive band centred at about 11 µm. The snow_cci snow cover mapping algorithm is a two-step approach: first, a strict pre-classification is applied to identify all cloud free pixels which are certainly snow free. For all remaining pixels, the snow_cci SCFV retrieval method is applied. Improvements to the GlobSnow algorithm implemented for snow_cci version 1 include (i) the utilisation of a background reflectance map derived from statistical analyses of MODIS time series replacing the constant values for snow free ground used in the GlobSnow approach, and (ii) the adaptation of the retrieval method for mapping in forested areas the SCFV. Permanent snow and ice, and water areas are masked based on the Land Cover CCI data set of the year 2000. Both classes were separately aggregated to the pixel spacing of the SCFV product. Water areas are masked if more than 30 percent of the pixel is classified as water, permanent snow and ice areas are masked if more than 50 percent are identified as such areas in the aggregated map. The product uncertainty for observed land pixels is provided as unbiased root mean square error (RMSE) per pixel in the ancillary variable. The SCFV product is aimed to serve the needs for users working in the cryosphere and climate research and monitoring activities, including the detection of variability and trends, climate modelling and aspects of hydrology, meteorology, and biology. ENVEO is responsible for the SCFV product development and generation from MODIS data, SYKE supported the development. There are a few days without any MODIS acquisitions in the years 2000, 2001, 2002, 2003, 2008, 2016 and 2018. On several days in the years 2000 to 2006, and on a few days in the years 2012, 2015 and 2016, the acquired MODIS data have either only limited coverage, or some of the MODIS data were corrupted during the download process. For these days, the SCFV products are available but have data gaps.

  • The Cloud_cci MODIS-Terra dataset was generated within the Cloud_cci project (http://www.esa-cloud-cci.org) which was funded by the European Space Agency (ESA) as part of the ESA Climate Change Initiative (CCI) programme (Contract No.: 4000109870/13/I-NB). This dataset is one of the 6 datasets generated in Cloud_cci; all of them being based on passive-imager satellite measurements. This dataset is based on MODIS (onboard Terra) measurements and contains a variety of cloud properties which were derived employing the Community Cloud retrieval for Climate (CC4CL) retrieval system. The core cloud properties contained in the Cloud_cci MODIS-Terra dataset are cloud mask/fraction, cloud phase, cloud top pressure/height/temperature, cloud optical thickness, cloud effective radius and cloud liquid/ice water path. Spectral cloud albedo is also included as experimental product. Level-3C product files contain monthly averages and histograms of the mentioned cloud properties together with propagated uncertainty measures.

  • The Cloud_cci MODIS-Aqua dataset was generated within the Cloud_cci project (http://www.esa-cloud-cci.org) which was funded by the European Space Agency (ESA) as part of the ESA Climate Change Initiative (CCI) programme (Contract No.: 4000109870/13/I-NB). This dataset is one of the 6 datasets generated in Cloud_cci; all of them being based on passive-imager satellite measurements. This dataset is based on MODIS (onboard Aqua) measurements and contains a variety of cloud properties which were derived employing the Community Cloud retrieval for Climate (CC4CL) retrieval system. The core cloud properties contained in the Cloud_cci MODIS-Aqua dataset are cloud mask/fraction, cloud phase, cloud top pressure/height/temperature, cloud optical thickness, cloud effective radius and cloud liquid/ice water path. Spectral cloud albedo is also included as experimental product. Level-3C product files contain monthly averages and histograms of the mentioned cloud properties together with propagated uncertainty measures.

  • A new monthly long term average (climatology) of Leaf Area Index (LAI) has been developed for use as ancillary data with the Joint UK Land Environment Simulator (JULES) Land Surface Model and the UK Met Office Unified Model. It is derived from an improved version of long time series of LAI from the original Global LAnd Surface Satellite (GLASS) products (http://www.glass.umd.edu/LAI/MODIS/0.05D/). The GLASS data consists of a time series of LAI from Moderate Resolution Imaging Spectroradiometer (MODIS) surface-reflectance data for the period 2000-2014. The MODIS data was provided in a spatial resolution of 1km in a sinusoidal projection and is interpolated into 0.5deg on a geographic latitude/longitude projection in this dataset. The total LAI from MODIS is segregated into five different Plant Functional Types (PFTs) using the fractional coverage of each PFT from the Climate Change Initiative (CCI) Land Cover data. For this reason this new LAI climatology should be used in combination with the CCI PFT data, which is also provided here. Two variables are provided with the dataset containing LAI, each covering the same spatial and time extent. The PFT data provided with this dataset covers a time span of only one year, 2010. - Leaf Area Index (LAI) - LAI is an important parameter in land-surface models, influencing the surface roughness, transpiration rate and the soil water content and temperature. Numerous outputs of vegetation models such as net primary productivity (NPP), evapotranspiration (ET), light absorption by plants (FAPAR), nutrient dynamics etc., are influenced by LAI where it is a key variable in energy and water balance calculations. - Vegetation Canopy Height (H) - H plays an important role in the interface between the atmosphere and land surface and it impacts weather and climate at local to global scales by modulating aerodynamic conductance and vegetation dynamics. Therefore, H is fundamentally needed for the calculation of turbulent exchanges of energy and mass between the atmosphere and the terrestrial ecosystem. One variable is provided with the dataset containing CCI PFTs: - Fractional coverage of 5 PFTS or vegetation classes and 4 land use classes – The 5 PFTs are Broad Leaf, Needle Leaf, C3 Grass, C4 Grass and Shrub. The 4 land use classes are Urban area, Inland Water, Bare Soil and Snow/Ice. Full details about this dataset can be found at https://doi.org/10.5285/6d07d60a-4cb9-44e4-be39-89ea40365236

  • The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains the Version 4.2 Remote Sensing Reflectance product on a sinusoidal projection at approximately 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites). Values for remote sensing reflectance at the sea surface are provided for the standard SeaWiFS wavelengths (412, 443, 490, 510, 555, 670nm) with pixel-by-pixel uncertainty estimates for each wavelength. These are merged products based on SeaWiFS, MERIS and Aqua-MODIS data. Note, these data are also contained within the 'All Products' dataset. This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection).

  • Ground data from the National Forest and Soil Inventory of Mexico (INFyS) were used to calibrate a maximum entropy (MaxEnt) algorithm to generate forest biomass (AGB), its associated uncertainty, and forest probability maps. The input predictor layers for the MaxEnt algorithm were extracted from the moderate resolution imaging spectrometer (MODIS) vegetation index (VI) products, ALOS PALSAR L-band dual-polarization backscatter coefficient images, and the Shuttle Radar Topography Mission (SRTM) digital elevation model. A Jackknife analysis of the model accuracy indicated that the ALOS PALSAR layers have the highest relative contribution (50.9%) to the estimation of AGB, followed by MODIS-VI (32.9%) and SRTM (16.2%). The forest cover mask derived from the forest probability map showed higher accuracy (κ = 0.83) than alternative masks derived from ALOS PALSAR (κ = 0.72–0.78) or MODIS vegetation continuous fields (VCF) with a 10% tree cover threshold (κ = 0.66). The use of different forest cover masks yielded differences of about 30 million ha in forest cover extent and 0.45 Gt C in total carbon stocks. The AGB map showed a root mean square error (RMSE) of 17.3 t C ha− 1 and R2 = 0.31 when validated at the 250 m pixel scale with inventory plots. The error and accuracy at municipality and state levels were RMSE = ± 4.4 t C ha− 1, R2 = 0.75 and RMSE = ± 2.1 t C ha− 1, R2 = 0.94 respectively. We estimate the total carbon stored in the aboveground live biomass of forests of Mexico to be 1.69 Gt C ± 1% (mean carbon density of 21.8 t C ha− 1), which agrees with the total carbon estimated by FAO for the FRA 2010 (1.68 Gt C). The new map, derived directly from the biomass estimates of the national inventory, proved to have similar accuracy as existing forest biomass maps of Mexico, but is more representative of the shape of the probability distribution function of AGB in the national forest inventory data. Our results suggest that the use of a non-parametric maximum entropy model trained with forest inventory plots, even at the sub-pixel size, can provide accurate spatial maps for national or regional REDD + applications and MRV systems.