Keyword

MODIS

82 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 82
  • These data are a copy of MODIS data from the NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC). The copy is potentially only a subset. Below is the description from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD19A2 MCD19A2 is the shortname for the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm-based Level-2 gridded (L2G) aerosol optical thickness over land surfaces product. Derived using both Terra and Aqua MODIS inputs, this L2 product is produced daily at 1 km pixel resolution. This product helps generate a number of atmospheric and geometric properties/parameters that are used to produce another facet of the MAIAC algorithm: the land surface Bidirectional Reflectance Factor. The MCD19A2 product contains two data groups with the following Science Data Set parameters: Grid500m groupAerosol Optical Depth at 047 micronAerosol Optical Depth at 055 micronAOD Uncertainty at 047 micronFine-Mode Fraction for OceanColumn Water Vapor in cm liquid waterAOD QAAOD Model (Regional background model used)Injection Height (Smoke injection height over local surface height)Grid5km groupCosine of Solar Zenith AngleCosine of View Zenith AngleRelative Azimuth AngleScattering AngleGlint Angle The MCD19A2 product has achieved Stage-3 validation. Shortname: MCD19A2 , Platform: Combined Aqua Terra , Instrument: MODIS , Processing Level: Level-2 Tiled , Spatial Resolution: 1 km , Temporal Resolution: daily , ArchiveSets: 6 , Collection: MODIS Collection 6 (ArchiveSet 6) , PGE Number: PGE113 , File Naming Convention: MCD19A2.AYYYYDDD.hHHvVV.CCC.YYYYDDDHHMMSS.hdf YYYYDDD = Year and Day of Year of acquisition hHH = Horizontal tile number (0-35) vVV = Vertical tile number (0-17) CCC = Collection number YYYYDDDHHMMSS = Production Date and Time , Citation: Alexi Lyapustin - NASA GSFC, Yujie Wang - Univeristy of Maryland Baltimore County and MODAPS SIPS - NASA. (2015). MCD19A2 MODIS/Terra+Aqua Aerosol Optical Thickness Daily L2G Global 1km SIN Grid. NASA LP DAAC. http://doi.org/10.5067/MODIS/MCD19A2.006 , Keywords: Atmospheric Correction, MODIS, MAIAC, Bidirectional Surface reflectance, Aerosols

  • This dataset contains Daily Snow Cover Fraction of viewable snow from the MODIS satellite instruments, produced by the Snow project of the ESA Climate Change Initiative programme. Snow cover fraction viewable (SCFV) indicates the area of snow viewable from space over all land surfaces. In forested areas this refers to snow viewable on top of the forest canopy. The SCFV is given in percentage (%) per pixel. The global SCFV product is available at about 1 km pixel size for all land areas, excluding Antarctica and Greenland ice sheets. The coastal zones of Greenland are included. The SCFV time series provides daily products for the period 2000 – 2019. The SCFV product is based on Moderate resolution Imaging Spectroradiometer (MODIS) data on-board the Terra satellite. The retrieval method of the snow_cci SCFV product from MODIS data has been further developed and improved based on the ESA GlobSnow approach described by Metsämäki et al. (2015) and complemented with a pre-classification module developed by ENVEO. For the SCFV product generation from MODIS, multiple reflective and emissive spectral bands are used. In a first step, clouds are masked using an adapted version of the Simple Cloud Detection Algorithm version 2.0 (SCDA2.0) (Metsämäki et al., 2015). All cloud free pixels are then used for the snow extent mapping, using spectral bands centred at about 550 nm and 1.6 µm, and an emissive band centred at about 11 µm. The snow_cci snow cover mapping algorithm is a two-step approach: first, a strict pre-classification is applied to identify all cloud free pixels which are certainly snow free. For all remaining pixels, the snow_cci SCFV retrieval method is applied. Improvements to the GlobSnow algorithm implemented for snow_cci version 1 include (i) the utilisation of a background reflectance map derived from statistical analyses of MODIS time series replacing the constant values for snow free ground used in the GlobSnow approach, and (ii) the adaptation of the retrieval method for mapping in forested areas the SCFV. Permanent snow and ice, and water areas are masked based on the Land Cover CCI data set of the year 2000. Both classes were separately aggregated to the pixel spacing of the SCFV product. Water areas are masked if more than 30 percent of the pixel is classified as water, permanent snow and ice areas are masked if more than 50 percent are identified as such areas in the aggregated map. The product uncertainty for observed land pixels is provided as unbiased root mean square error (RMSE) per pixel in the ancillary variable. The SCFV product is aimed to serve the needs for users working in the cryosphere and climate research and monitoring activities, including the detection of variability and trends, climate modelling and aspects of hydrology, meteorology, and biology. ENVEO is responsible for the SCFV product development and generation from MODIS data, SYKE supported the development. There are a few days without any MODIS acquisitions in the years 2000, 2001, 2002, 2003, 2008, 2016 and 2018. On several days in the years 2000 to 2006, and on a few days in the years 2012, 2015 and 2016, the acquired MODIS data have either only limited coverage, or some of the MODIS data were corrupted during the download process. For these days, the SCFV products are available but have data gaps.

  • This dataset contains Daily Snow Cover Fraction (snow on ground) from MODIS, produced by the Snow project of the ESA Climate Change Initiative programme. Snow cover fraction on ground (SCFG) indicates the area of snow observed from space on land surfaces, in forested areas corrected for the transmissivity of the forest canopy. The SCFG is given in percentage (%) per pixel. The global SCFG product is available at about 1 km pixel size for all land areas, excluding Antarctica and Greenland ice sheets. The coastal zones of Greenland are included. The SCFG time series provides daily products for the period 2000 – 2019. The SCFG product is based on Moderate resolution Imaging Spectroradiometer (MODIS) data on-board the Terra satellite. The retrieval method of the snow_cci SCFG product from MODIS data has been further developed and improved based on the ESA GlobSnow approach described by Metsämäki et al. (2015) and complemented with a pre-classification module developed by ENVEO. For the SCFG product generation from MODIS, multiple reflective and emissive spectral bands are used. In a first step, clouds are masked using an adapted version of the Simple Cloud Detection Algorithm version 2.0 (SCDA2.0) (Metsämäki et al., 2015). All cloud free pixels are then used for the snow extent mapping, using spectral bands centred at about 550 nm and 1.6 µm, and an emissive band centred at about 11 µm. The snow_cci snow cover mapping algorithm is a two-step approach: first, a strict pre-classification is applied to identify all cloud free pixels which are certainly snow free. For all remaining pixels, the snow_cci SCFG retrieval method is applied. Improvements to the GlobSnow algorithm implemented for snow_cci version 1 include (i) the utilisation of background and forest reflectance maps derived from statistical analyses of MODIS time series replacing the constant values for snow free ground and snow free forest used in the GlobSnow approach, and (ii) the usage of a global forest transmissivity map developed and created within snow_cci based on forest density from Hansen et al. (2013) and forest type layers from Land Cover CCI (Defourny, 2019). The forest transmissivity map is used to account for the shading effects of the forest canopy and estimate also in forested areas the fractional snow cover on ground. Permanent snow and ice, and water areas are masked based on the Land Cover CCI data set of the year 2000. Both classes were separately aggregated to the pixel spacing of the SCFG product. Water areas are masked if more than 30 percent of the pixel is classified as water, permanent snow and ice areas are masked if more than 50 percent are identified as such areas in the aggregated map. The product uncertainty for observed land pixels is provided as unbiased root mean square error (RMSE) per pixel in the ancillary variable. The SCFG product is aimed to serve the needs for users working in the cryosphere and climate research and monitoring activities, including the detection of variability and trends, climate modelling and aspects of hydrology, meteorology, and biology. ENVEO is responsible for the SCFG product development and generation from MODIS data, SYKE supported the development. There are a few days without any MODIS acquisitions in the years 2000, 2001, 2002, 2003, 2008, 2016 and 2018. On several days in the years 2000 to 2006, and on a few days in the years 2012, 2015 and 2016, the acquired MODIS data have either only limited coverage, or some of the MODIS data were corrupted during the download process. For these days, the SCFG products are available but have data gaps.

  • The Cloud_cci MODIS-Aqua dataset was generated within the Cloud_cci project (http://www.esa-cloud-cci.org) which was funded by the European Space Agency (ESA) as part of the ESA Climate Change Initiative (CCI) programme (Contract No.: 4000109870/13/I-NB). This dataset is one of the 6 datasets generated in Cloud_cci; all of them being based on passive-imager satellite measurements. This dataset is based on MODIS (onboard Aqua) measurements and contains a variety of cloud properties which were derived employing the Community Cloud retrieval for Climate (CC4CL) retrieval system. The core cloud properties contained in the Cloud_cci MODIS-Aqua dataset are cloud mask/fraction, cloud phase, cloud top pressure/height/temperature, cloud optical thickness, cloud effective radius and cloud liquid/ice water path. Spectral cloud albedo is also included as experimental product. Level-3C product files contain monthly averages and histograms of the mentioned cloud properties together with propagated uncertainty measures.

  • The Cloud_cci MODIS-Terra dataset was generated within the Cloud_cci project (http://www.esa-cloud-cci.org) which was funded by the European Space Agency (ESA) as part of the ESA Climate Change Initiative (CCI) programme (Contract No.: 4000109870/13/I-NB). This dataset is one of the 6 datasets generated in Cloud_cci; all of them being based on passive-imager satellite measurements. This dataset is based on MODIS (onboard Terra) measurements and contains a variety of cloud properties which were derived employing the Community Cloud retrieval for Climate (CC4CL) retrieval system. The core cloud properties contained in the Cloud_cci MODIS-Terra dataset are cloud mask/fraction, cloud phase, cloud top pressure/height/temperature, cloud optical thickness, cloud effective radius and cloud liquid/ice water path. Spectral cloud albedo is also included as experimental product. Level-3C product files contain monthly averages and histograms of the mentioned cloud properties together with propagated uncertainty measures.

  • Cloud properties derived from the MODIS instrument on NASA's Aqua satellite by the ESA Cloud CCI project. The L3C dataset consists of data combined (averaged) from a single instrument into a global space-time grid, with a spatial resolution of 0.5 degrees lat/lon and a temporal resolution of 1 month. This dataset is version 1.0 data from Phase 1 of the CCI project.

  • The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains all their Version 4.2 generated ocean colour products on a sinusoidal projection at 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites). Data products being produced include: phytoplankton chlorophyll-a concentration; remote-sensing reflectance at six wavelengths; total absorption and backscattering coefficients; phytoplankton absorption coefficient and absorption coefficients for dissolved and detrital material; and the diffuse attenuation coefficient for downwelling irradiance for light of wavelength 490nm. Information on uncertainties is also provided. This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection.)

  • The ESA Ocean Colour CCI project has produced global, level 3, binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains their Version 5.0 inherent optical properties (IOP) product (in mg/m3) on a sinusoidal projection at approximately 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites) covering the period 1997 - 2020. Note, the IOP data are also included in the 'All Products' dataset. The inherent optical properties (IOP) dataset consists of the total absorption and particle backscattering coefficients, and, additionally, the fraction of detrital & dissolved organic matter absorption and phytoplankton absorption. The total absorption (units m-1), the total backscattering (m-1), the absorption by detrital and coloured dissolved organic matter, the backscattering by particulate matter, and the absorption by phytoplankton share the same spatial resolution of ~4 km. The values of IOP are reported for the standard SeaWiFS wavelengths (412, 443, 490, 510, 555, 670nm). This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection.)

  • The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains their Version 4.2 chlorophyll-a product (in mg/m3) on a geographic projection at 4 km spatial resolution and at number of time resolutions (daily, 5day, 8day and monthly composites). Note, this chlor_a data is also included in the 'All Products' dataset. This data product is on a geographic grid projection, which is a direct conversion of latitude and longitude coordinates to a rectangular grid, typically a fixed multiplier of 360x180. The netCDF files follow the CF convention for this projection with a resolution of 8640x4320. (A separate dataset is also available for data on a sinusoidal projection.)

  • Cloud properties derived from the MODIS instrument on NASA's Terra satellite by the ESA Cloud CCI project. The L3C dataset consists of data combined (averaged) from a single instrument into a global space-time grid, with a spatial resolution of 0.5 degrees lat/lon and a temporal resolution of 1 month. This dataset is version 1.0 data from Phase 1 of the CCI project.