From 1 - 4 / 4
  • [This dataset is embargoed until May 1, 2023]. The data comprises river section, zone and test site delineation, winter Season average NDVI by section and zone 1989-2020, land cover maps seasonally 1989-2020, and derived land cover fractions by section and zone 1989-2020. The data was produced as part of a study to determine how changes in geomorphic form and dynamics due to human alteration to river flows and riparian land management relate to changes in vegetation communities in the Sutlej and Beas Rivers, India. Vegetated and other land cover, including water area, were quantified by winter season NDVI trends (in the plains of Punjab) and seasonal supervised classification of Landsat data for over a 30-year period. The work was supported by the Natural Environment Research Council (Grant NE/S01232X/1). Full details about this dataset can be found at https://doi.org/10.5285/9a96e199-34d0-46f9-9a64-140d300a2531

  • Sentinel-Hub NDVI description: NDVI is a simple, but effective index for quantifying green vegetation. It normalizes green leaf scattering in Near Infra-red wavelengths with chlorophyll absorption in red wavelengths. The value range of the NDVI is -1 to 1. Negative values of NDVI (values approaching -1) correspond to water. Values close to zero (-0.1 to 0.1) generally correspond to barren areas of rock, sand, or snow. Low, positive values represent shrub and grassland (approximately 0.2 to 0.4), while high values indicate temperate and tropical rainforests (values approaching 1). It is a good proxy for live green vegetation. NDVI = (NIR – Red) / (NIR + RED) Sentinel-2 NDVI = (B8 - B4) / (B8 + B4) These data have been created by the Joint Nature Conservation Committee (JNCC) as part of a Defra Natural Capital and Ecosystem Assessment (NCEA) project to produce a regional, and ultimately national, system for detecting a change in habitat conditions at a land parcel level. The first stage of the project is focused on Yorkshire, UK, and therefore the dataset includes granules and scenes covering Yorkshire and surrounding areas only. The dataset contains Normalised Difference Vegetation Index (NDVI) data derived from Defra and JNCC Sentinel-2 Analysis Ready Data. NDVI files are generated for the following Sentinel-2 granules: • T30UWE • T30UXF • T30UWF • T30UXE • T31UCV • T30UYE • T31UCA As the project continues, JNCC will expand the geographical coverage of this dataset and will provide continuous updates as ARD becomes available.

  • The Normalised Difference Vegetation Index (NDVI) dataset details surface reflectance measured as NDVI. NDVI provides a proxy for the amount and/or the relative 'greenness' of vegetation. Data collection was carried out at six intertidal sites in the winter and summer of 2013. Three of the sites were in Morecambe Bay, North West England and three of the sites were in Essex, South East England, each of these sites consisted of a saltmarsh area and adjacent mudflat area, twenty two sampling quadrats were placed on each area. A single NDVI observation was taken at each quadrat. Spectral reflectance was measured using a portable spectrometer. This data was collected as part of Coastal Biodiversity and Ecosystem Service Sustainability (CBESS): NE/J015644/1. The project was funded with support from the Biodiversity and Ecosystem Service Sustainability (BESS) programme. BESS is a six-year programme (2011-2017) funded by the UK Natural Environment Research Council (NERC) and the Biotechnology and Biological Sciences Research Council (BBSRC) as part of the UK's Living with Environmental Change (LWEC) programme. Full details about this dataset can be found at https://doi.org/10.5285/75b1f669-66b3-472b-9d31-eda908826e17

  • This dataset comprises three gridded drought indicators based on remote sensing data for Europe. The data has a spatial resolution of 0.05 degree and a temporal resolution of 1 month for the period going from 2000 to 2015. The three drought indicators are: the Vegetation Condition Index (VCI) based on satellite product NDVI (Normalised Difference Vegetation Index); the Temperature Condition Index (TCI) based on remotely sensed LST (Land Surface Temperature); the Vegetation Health Index (VHI) which is a combination of VCI and TCI, calculated using MODIS products. Full details about this dataset can be found at https://doi.org/10.5285/4e0d0e50-2f9c-4647-864d-5c3b30bb5f4b