From 1 - 10 / 12
  • This dataset contains air quality measurements: atmospheric ozone, NOx and particulate matter, for the Kirby Misperton site. British Geological Survey (BGS), the universities of Birmingham, Bristol, Liverpool, Manchester and York and partners from Public Health England (PHE) and the Department for Business, Energy and Industrial Strategy (BEIS), are conducting an independent environmental baseline monitoring programme near Kirby Misperton, North Yorkshire and Little Plumpton, Lancashire. These are areas where planning permission has been granted for hydraulic fracturing. The monitoring allows the characterisation of the environmental baseline before any hydraulic fracturing and gas exploration or production takes place in the event that planning permission is granted. The investigations are independent of any monitoring carried out by the industry or the regulators, and information collected from the programme will be made freely available to the public. ----------------------------------------------------------------------------------------------- If you use these data, please note the requirement to acknowledge use. Use of data and information from the project: "Science-based environmental baseline monitoring associated with shale gas development in the Vale of Pickering, Yorkshire (including supplementary air quality monitoring in Lancashire)", led by the British Geological Survey Permission for reproduction of data accessed from the CEDA website is granted subject to inclusion of the following acknowledgement: "These data were produced by the Universities of Manchester and York (National Centre for Atmospheric Science) in a collaboration with the British Geological Survey and partners from the Universities of Birmingham, Bristol and Liverpool and Public Health England, undertaking a project grant-funded by the Department for Energy & Climate Change (DECC), 2015-2016. " ----------------------------------------------------------------------------------------------------------

  • This dataset contains NO, NO2 and NOx mixing ratio measurements using the commercially available Thermo 42C chemiluminescence monitor. Measurements were made at the Indian Institute of Technology Delhi (IIT-Delhi), India. Mixing ratios are reported in parts per billion (ppb). The stationary inlet was located on the roof of a 5-storey building at Block IV, Indian Institute of Technology Delhi campus. The data were collected over three measurement periods (i) winter: 12/01/2018 - 13/02/2018, (ii) pre-monsoon: 26/04/2018 - 05/06/2018 and (iii) post-monsoon: 13/10/2018 - 10/11/2018, by the University of Birmingham. These data were collected as part of the ASAP-Delhi project as part of the Atmospheric Pollution and Human Health in an Indian Megacity (APHH) programme.

  • Long term measurements of Nitrogen Oxides NO, NOx, by the ANNOX instrument at the Weybourne Atmospheric Observatory (WAO). WAO is part of the School of Environmental Sciences at the University of East Anglia (UEA). WAO, situated on the north Norfolk coast, is part of the School of Environmental Sciences at the University of East Anglia (UEA) and is a world class facility for fundemental research, background atmospheric monitoring and teaching purposes. WAO operates a range of instruments in its measurement programme - the data from which is archived at the BADC.

  • This dataset contains air quality measurements: atmospheric ozone, NOx and particulate matter, for the Little Plumpton site. British Geological Survey (BGS), the universities of Birmingham, Bristol, Liverpool, Manchester and York and partners from Public Health England (PHE) and the Department for Business, Energy and Industrial Strategy (BEIS), are conducting an independent environmental baseline monitoring programme near Kirby Misperton, North Yorkshire and Little Plumpton, Lancashire. These are areas where planning permission has been granted for hydraulic fracturing. The monitoring allows the characterisation of the environmental baseline before any hydraulic fracturing and gas exploration or production takes place in the event that planning permission is granted. The investigations are independent of any monitoring carried out by the industry or the regulators, and information collected from the programme will be made freely available to the public. ----------------------------------------------------------------------------------------------- If you use these data, please note the requirement to acknowledge use. Use of data and information from the project: "Science-based environmental baseline monitoring associated with shale gas development in the Vale of Pickering, Yorkshire (including supplementary air quality monitoring in Lancashire)", led by the British Geological Survey Permission for reproduction of data accessed from the CEDA website is granted subject to inclusion of the following acknowledgement: "These data were produced by the Universities of Manchester and York (National Centre for Atmospheric Science) in a collaboration with the British Geological Survey and partners from the Universities of Birmingham, Bristol and Liverpool and Public Health England, undertaking a project grant-funded by the Department for Energy & Climate Change (DECC), 2015-2016. " ----------------------------------------------------------------------------------------------------------

  • The BT Tower is a 190-m-tall telecommunications tower situated in central London, UK (51°31′17.4″N, 0°8′20.04″W). Mean building height is 8.8 ± 3.0 m within 1−10 km of the tower and 5.6 ± 1.8 m for suburban London beyond this. This dataset collection contains O3 and NOx measurements made at the BT tower (T35 level) sampled from a height of approx 180 metres above the ground. The measurements were made using a TEI 49i analyser and TEI 42CTL analyser.

  • This dataset contains ambient concentrations of ClNO2, Cl2, NO3, N2O5, aerosol composition and photolysis rates at Leicester (UK)

  • This dataset contains ambient concentrations of ClNO2, Cl2, NO3, N2O5, NO2, aerosol composition and photolysis rates at the Weybourne Atmospheric Observatory (UK)

  • This dataset contains ambient concentrations of ClNO2, Cl2, NO3, N2O5, NOx, CO and photolysis rates at the Penlee Point Atmospheric Observatory (UK)

  • This dataset collection contains air quality, greenhouse gas, Volatile Organic Compounds (VOCs) and surface meteorological measurements for the Kirby Misperton site and Little Plumpton. British Geological Survey (BGS), the universities of Birmingham, Bristol, Liverpool, Manchester and York and partners from Public Health England (PHE) and the Department for Business, Energy and Industrial Strategy (BEIS), are conducting an independent environmental baseline monitoring programme near Kirby Misperton, North Yorkshire and Little Plumpton, Lancashire. These are areas where planning permission has been granted for hydraulic fracturing. The monitoring allows the characterisation of the environmental baseline before any hydraulic fracturing and gas exploration or production takes place in the event that planning permission is granted. The investigations are independent of any monitoring carried out by the industry or the regulators, and information collected from the programme will be made freely available to the public.

  • This dataset is a model output from the European Monitoring and Evaluation Programme (EMEP) model applied to the UK (EMEP4UK) driven by Weather and Research Forecast model meteorology (WRF). It provides UK estimates daily averaged atmospheric composition at approximately 5 km grid for the years 2001 to 2015. The data consists of atmospheric composition and deposition values of various pollutants; including PM10, PM2.5, secondary organic aerosols (SOA), elemental carbon (EC), secondary inorganic aerosols (SIA), sulfur dioxide (SO2), ammonia (NH3), nitrogen oxides (NOX) , and ozone (O3). The EMEP model version used here is rv4.17 and the WRF model version is the 3.7.1. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability. A version of this dataset is available (https://doi.org/10.5285/ca302d30-7b8b-46ec-90b6-67b79df00c92), run with the latest release of the Atmospheric Chemistry Transport Model EMEP (rv4.36) and with the latest NAEI emissions. The new set of model runs covers an extended time period from 2002 until 2021 and is available in a higher resolution (3 km2 x 3km2). Full details about this dataset can be found at https://doi.org/10.5285/b0545f67-e47c-4077-bf3c-c5ffcd6b72c8