From 1 - 2 / 2
  • The data consists of nitrogen (N) offtake, N emissions and soil N parameters, and herbage quality parameters from a three-cut silage plot trial located at two grassland sites within the UK collected between April and October 2016. The sites were Rothamsted Research at North Wyke in Devon and Bangor University at Henfaes Research Station in North Wales. At each site measurements were taken from 16 plots, organised within a randomised complete block design. Fertiliser was applied three times and three cuts were performed, all parameters measured were following a fertiliser application. Nitrogen parameters measured were crude protein (CP) of herbage, ammonia (NH3) emissions, nitrous oxide (N2O) emissions, and soil ammonium (NH4) and nitrate (NO3). Herbage quality parameters measured were dry matter, acid-digestible fibre (ADF), ash, CP, metabolizable energy (ME), and non-digestible fibre (NDF) and digestibility (D) was calculated. Nitrogen offtake, losses and fluxes were measured to determine the N use efficiency and the economic viability of different N fertilisers. Measurements were undertaken by members of staff from Bangor University, School of Environment, Natural Resources & Geography and Rothamsted Research, Sustainable Agricultural Sciences – North Wyke. Data was collected for the Newton Fund project "UK-China Virtual Joint Centre for Improved Nitrogen Agronomy". Funded by Biotechnology and Biological Sciences Research Council (BBSRC) and NERC - Ref BB/N013468/1 Full details about this dataset can be found at https://doi.org/10.5285/4c7d4b3c-88f7-43ab-a50f-b6804474e568

  • The data contains nitrogen (N) offtake, N emissions (ammonia and nitrous oxide), soil parameters (pH, EC, NH4+, NO3−), biomass and grain production from a winter wheat field experiment located at Bangor University (Henfaes Research Station in North Wales) and Rothamsted Research (North Wyke (NW) in Devon). Data were collected between April 2017 and August 2017. Measurements and soil and plant samples were taken from 45 plots in a randomized complete block design. Sixteen extra mini-plots at the prevailing wind (south westerly) edge of the experiment site were used at NW for NH3 volatilization measurements. The treatments were control (C, without N application), food based digestate (D), food based digestate + the nitrification inhibitor 3,4-dimethylpyrazole (DMPP; D+NI), acidified food based digestate (AD), acidified food based digestate + the nitrification inhibitor 3,4-dimethylpyrazole (DMPP; AD+NI). Four rates of ammonium nitrate (NH4NO3; 75, 150, 225 and 300 kg N ha−1) were applied to compare yields and fertilizer replacement rate of the digestate treatments (targeted at 190 kg N ha−1). Soil pH, soil electrical conductivity (EC), soil NH4+ and soil NO3−, NH3 volatilization, N2O emissions were measured periodically for C, D, D+NI, AD and AD+NI and nitrogen concentration in grain and straw, grain yield and plant biomass for all treatments. Nitrogen offtake, losses and fluxes were used to determine the N use efficiency (NUE) and fertilizer replacement rate of the digestate treatments. Measurements were undertaken by members of staff from Bangor University, School of Environment, Natural Resources & Geography and Rothamsted Research, Sustainable Agricultural Sciences – North Wyke. Data was collected for the Newton Fund project “UK-China Virtual Joint Centre for Improved Nitrogen Agronomy”. Funded by Biotechnology and Biological Sciences Research Council (BBSRC) and NERC - Ref BB/N013468/1 Full details about this dataset can be found at https://doi.org/10.5285/836dfb2e-bc6f-47d2-b924-8261be671391