From 1 - 4 / 4
  • The data pertains to a single time point ‘snapshot’ spatial sampling of site characteristics, soil parameters and soil greenhouse gas emissions for two sites (Extensive and Intensive). The extensively managed site (‘Extensive’; 240-340 m above sea level; a.s.l.) consisted of an 11.5 ha semi-improved, sheep-grazed pasture at Bangor University’s Henfaes Research Station, Abergwyngregyn, North Wales (53°13’13’’N, 4°0’34’’W). The intensively managed site (‘Intensive’; on average 160 m a.s.l.) was a 1.78 ha sheep-grazed pasture located in south-west England, at the North Wyke Farm Platform (NWFP), Rothamsted Research, Okehampton, Devon (50°46’10’’N, 30°54’05’’W). At the Extensive site soil and gas sampling was conducted on 30th November 2016. At the Intensive site soil and gas sampling was conducted on 1st August 2016. The data contains: site characteristics including elevation, slope, compound topographic index, vegetation type or manure application, and sample point grid references; soil parameters including soil bulk density, soil percentage water-filled pore space, soil moisture, soil organic matter contents, soil pH, soil nitrate nitrogen concentration, soil ammonium nitrogen concentration, soil percentage total carbon contents, soil percentage total nitrogen contents, and carbon to nitrogen content ratio; and soil greenhouse gas flux data for nitrous oxide, carbon dioxide and methane. The study was conducted as a wider part of the NERC funded Uplands-N2O project and BBSRC-supported Rothamsted Research, North Wyke Farm Platform (Grant Nos: NE/M015351/1, NE/M013847/1, NE/M013154/1, BBS/E/C/000J0100, BBS/E/C/000I0320, BBS/E/C/000I0330). Quantifying the spatial and variability of the drivers of greenhouse gas emissions and their interactions in grazing systems is critical to improve our understanding of nitrous oxide, carbon dioxide and methane fluxes, enabling better estimates of aggregated greenhouse gas emissions and associated uncertainties at the landscape scale. Full details about this dataset can be found at https://doi.org/10.5285/f3118fa8-6bec-488b-9713-2415912b8b9e

  • The dataset comprises nitrous oxide (N2O) flux data, collected from static chambers as part of a study to determine how land management affected nitrogen cycling by nitrifiers and denitrifiers in an upland agricultural grassland soil and to determine the effects of changing environmental conditions on nitric and nitrous oxide production and emission as a result of land management. Data were collected during a project funded under the NERC Soil Biodiversity Programme, established in 1999 and centred upon the intensive study of a large field experiment located at the Macaulay Land Use Research Institute (now the James Hutton Institute) farm at Sourhope in the Scottish Borders (Grid reference: NT8545019630). During the experiment, the site was monitored to assess changes in above-ground biomass production (productivity), species composition and relative abundance (diversity). Full details about this dataset can be found at https://doi.org/10.5285/46b23af7-0f63-4416-ad71-c08ee028c3b2

  • This dataset contains concentrations of dissolved organic carbon, dissolved inorganic carbon, nutrients and concentrations of greenhouse gases CO2, CH4 and N2O from nine sites across the River Tay catchment. Water was sampled on a monthly basis between February 2009 and December 2010. The locations of sampling sites were based on existing flow gauging and water sampling sites of the Scottish Environment Protection Agency (SEPA). Full details about this dataset can be found at https://doi.org/10.5285/a61da7da-b7ef-40b7-a324-c3711ef81207

  • The dataset contains greenhouse gas fluxes (N2O, CO2 and CH4) following artificial and real sheep urine applied to organic soils within the Carneddau mountain range (556 m a.s.l.) in Snowdonia National Park, North Wales, UK. The study was conducted across two contrasting seasons (summer and autumn). Soil greenhouse gas emission data was collected using a combination of automated chambers and manually sampled chambers, with gas samples analysed via gas chromatography. Supporting data include characterisation of the soil properties at each site, meteorological data, soil moisture and soil chemistry on a time-series following treatment application. The data were used to calculate sheep urine patch N2O-N emission factors, to improve estimates of greenhouse gas emissions from sheep urine deposited to extensively grazed montane agroecosystems. Full details about this dataset can be found at https://doi.org/10.5285/01811fce-1e0f-43be-8649-336b5c51d6cf