From 1 - 10 / 35
  • This dataset contains wind, temperature and humidity measurements. Oxidant and Particle Photochemical Processes above a South-East Asian tropical rain forest (OP3-Danum-08) is a 3-year Consortium Grant of the Natural Environment Research Council (NERC), beginning 1 October 2007. The objectives of the OP3 project are (i) to understand how emissions of reactive trace gases from a tropical rain forest mediate the production and processing of oxidants and particles in the troposphere, and (ii) to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate.

  • This dataset contains condensation particle counter measurements. Oxidant and Particle Photochemical Processes above a South-East Asian tropical rain forest (OP3-Danum-08) is a 3-year Consortium Grant of the Natural Environment Research Council (NERC), beginning 1 October 2007. The objectives of the OP3 project are (i) to understand how emissions of reactive trace gases from a tropical rain forest mediate the production and processing of oxidants and particles in the troposphere, and (ii) to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate.

  • ]This dataset contains measurements of Electron Ionisation-Halocarbons. Oxidant and Particle Photochemical Processes above a South-East Asian tropical rain forest (OP3-Danum-08) is a 3-year Consortium Grant of the Natural Environment Research Council (NERC), beginning 1 October 2007. The objectives of the OP3 project are (i) to understand how emissions of reactive trace gases from a tropical rain forest mediate the production and processing of oxidants and particles in the troposphere, and (ii) to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate.

  • This dataset contains temperature gradient measurements. Oxidant and Particle Photochemical Processes above a South-East Asian tropical rain forest (OP3-Danum-08) is a 3-year Consortium Grant of the Natural Environment Research Council (NERC), beginning 1 October 2007. The objectives of the OP3 project are (i) to understand how emissions of reactive trace gases from a tropical rain forest mediate the production and processing of oxidants and particles in the troposphere, and (ii) to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate.

  • This dataset contains measurements of chloroform and iodomethane. Oxidant and Particle Photochemical Processes above a South-East Asian tropical rain forest (OP3-Danum-08) is a 3-year Consortium Grant of the Natural Environment Research Council (NERC), beginning 1 October 2007. The objectives of the OP3 project are (i) to understand how emissions of reactive trace gases from a tropical rain forest mediate the production and processing of oxidants and particles in the troposphere, and (ii) to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate.

  • This dataset contains wind, temperature and humidity measurements. Oxidant and Particle Photochemical Processes above a South-East Asian tropical rain forest (OP3-Danum-08) is a 3-year Consortium Grant of the Natural Environment Research Council (NERC), beginning 1 October 2007. The objectives of the OP3 project are (i) to understand how emissions of reactive trace gases from a tropical rain forest mediate the production and processing of oxidants and particles in the troposphere, and (ii) to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate.

  • This dataset contains O3 measurements. Oxidant and Particle Photochemical Processes above a South-East Asian tropical rain forest (OP3-Danum-08) is a 3-year Consortium Grant of the Natural Environment Research Council (NERC), beginning 1 October 2007. The objectives of the OP3 project are (i) to understand how emissions of reactive trace gases from a tropical rain forest mediate the production and processing of oxidants and particles in the troposphere, and (ii) to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate.

  • This dataset contains measurements of ethane, propane, butane, cyclopentane, pentane and hexane. Oxidant and Particle Photochemical Processes above a South-East Asian tropical rain forest (OP3-Danum-08) is a 3-year Consortium Grant of the Natural Environment Research Council (NERC), beginning 1 October 2007. The objectives of the OP3 project are (i) to understand how emissions of reactive trace gases from a tropical rain forest mediate the production and processing of oxidants and particles in the troposphere, and (ii) to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate.

  • This dataset contains temperature gradient measurements. Oxidant and Particle Photochemical Processes above a South-East Asian tropical rain forest (OP3-Danum-08) is a 3-year Consortium Grant of the Natural Environment Research Council (NERC), beginning 1 October 2007. The objectives of the OP3 project are (i) to understand how emissions of reactive trace gases from a tropical rain forest mediate the production and processing of oxidants and particles in the troposphere, and (ii) to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate.

  • Oxidant and Particle Photochemical Processes above a South-East Asian tropical rain forest (OP3-Danum-08) is a 3-year Consortium Grant of the Natural Environment Research Council (NERC), beginning 1 October 2007. The objectives of the OP3 project are (i) to understand how emissions of reactive trace gases from a tropical rain forest mediate the production and processing of oxidants and particles in the troposphere, and (ii) to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate.