Phytoplankton taxonomic biomass in water bodies

11 record(s)
Type of resources
Contact for the resource
Provided by
Representation types
Update frequencies
From 1 - 10 / 11
  • This dataset is comprised of laboratory based culture experiments with five eukaryotic plankton species. The plankton were grown in culture media made up in filtered seawater collected from the continuous seawater supply system in the laboratories of the Centre for Environment Fisheries and Aquaculture Science (Cefas) in Lowesoft, UK, pumped from the North Sea. Experiments were undertaken between December 2017 and March 2019. The dataset also includes environmental data: dissolved oxygen concentration from water samples collected from CTD casts on the AMT28 cruise which took place from September 23 to October 30, 2018. This study contributes to the ‘Marine bacterioplankton respiration: a critical unknown in global carbon budgets’ project funded by The Leverhulme Trust (RPG-2017-089) and the ‘Remineralisation of organic carbon by marine bacterioplankton (REMAIN)’ project funded by NERC Discovery Science (grant reference NE/R000956/1 active from December 01, 2017 to November 30, 2020). Data were generated by Carol Robinson, Isabel Seguro, and E. Elena Garcia-Martin of the University of East Anglia.

  • This dataset contains CTD, chlorophyll, and phytoplankton abundance and biomass data gathered through analysis of discrete water samples collected from multiple sailings of the RV Callista. The data were collected offshore of Falmouth, UK to explore the seasonally stratified waters of the Western English Channel in June and July 2013. Discrete water samples were taken with CTD profiles to examine the phytoplankton communities of subsurface chlorophyll maxima. Phytoplankton taxa/groups were identified, counted, and converted to a measure of biomass to analyse phyotplankton communities to determine if subsurface chlorophyll maximum thin layers (<5m thick) have a distinct phytoplankton community structure to that of broader maxima. The data were collected by Michelle Barnett as part of her PhD study funded by the Graduate School of the National Oceanography Centre, Southampton.

  • The data set comprises hydrographic, biogeochemical and biological data, including measurements of temperature, salinity and attenuance, plus concentrations of parameters such as nutrients, pigments, urea, hydrocarbons, sedimentation flux, sulphur and dissolved carbon. Analyses of bacterial, zooplankton and phytoplankton communities were also undertaken. The oceanographic data were supplemented by measurements of surface meteorological parameters. Data were collected across three repeated sections: one along the Gulf of Oman; a section at 67deg East from 8 to 14.5deg North; and a major section from 8deg North, 67 deg East to the coast of Oman. Other one-off sections were also traversed in the Arabian Sea and Gulf of Oman areas. Measurements were collected during two cruises: one between 27 August and the 4 October 1994 and the other between the 16 November and the 19 December 1994. Sections were covered by underway surface ocean measurements (one minute sampling of multiple parameters providing some 5 million measurements) complemented by a total of 21 CTD/water-bottle stations, 14 of which were repeated. ARABESQUE was organised by the Plymouth Marine Laboratory of NERC's Centre for Coastal and Marine Sciences and involved the University of Wales, Bangor; Queen's University of Belfast; University of East Anglia; University of Edinburgh; University of Newcastle; the Bedford Institute of Oceanography, Canada; the Max Planck Institute for Limnology, Germany and the Sultan Qaboos University, Oman. Data management support for the project was provided by the British Oceanographic Data Centre. All data collected as part of the project were lodged with BODC who had responsibility for assembling, calibrating, quality controlling and fully documenting the data. BODC checked for instrument spikes or malfunction, values beyond the calibration range, unreasonable ratios of chemical constituents and unreasonable deviations from climatological means. Data were assembled into a relational database, complete with supporting documentation and a user manual. The full data set has been published by BODC on CD-ROM complete with user interface.

  • The programme involved two major fieldwork activities: a deep ocean research cruise and a programme of freshwater studies. The marine component of the dataset generated a total of 430 distinct variables, quantifying the meteorology, hydrography, chemistry, biogeochemistry, and the microbial plankton (bacteria, phytoplankton and microzooplankton) biomass, taxonomic composition along the 5500 km cruise track in the Indian Ocean during August-September 2001. Measurements were mainly made on water samples collected either from the sea surface while the ship was underway or from a range of depths during conductivity-temperatue-depth (CTD) and water sampling stations at each of 11 sites occupied in the Indian Ocean. The maximum depth sampled at open ocean sites ranged from 300 to 3000 m. Short sections of 300 m deep CTD and fluorescence profiles were also obtained using a moving vessel profiler (MVP). The freshwater component of the dataset generated variables from Priest Pot in the Lake District and from a range of other freshwater sites around the UK. It contains underpinning weekly time-series measurements characterising the physical, chemical and biological condition of the water column at the Priest Pot sampling site between 2002-2004, together with data from studies focused on the seasonal and spatial dynamics of viruses, bacteria and picophytoplankton, trace metal distribution and the ubiquity of microbial protists. The database also contains 376 gene sequences from genetic material extracted from environmental samples. The programme was a 5-year Thematic Programme funded by the Natural Environment Research Council (NERC) and the purpose of the study was to improve understanding of aquatic microbial biodiversity, with the emphasis on community interactions, ecosystem function (e.g. biogeochemical cycling of carbon and nutrients, and the potential for biotechnological exploitation. The programme involved scientists from the Plymouth Marine Laboratory, the National Oceanography Centre Southampton, University of Cardiff School of Biosciences, University of Cardiff School of Earth and Ocean Sciences, University of Warwick School of Biological Sciences, University of Newcastle School of Civil Engineering and Geosciences, University of Bristol School of Biological Sciences, University of Oxford Department of Zoology, University of Liverpool School of Biological Sciences, University of Stirling School of Biological and Environmental Sciences, the Marine Biological Association of the UK, Lancaster University Department of Environmental Science and the Centre for Ecology and Hydrology (CEH) Lancaster and Dorset.

  • This cross-disciplinary project resulted in a diverse data catalogue. This includes meteorology (2-D wind speed and direction, total irradiance, Photosynthetically Active Radiation/PAR, air temperature, atmospheric pressure, humidity); atmospheric composition (chemical analyses of aerosol particle composition) and biological, chemical and physical properties and processes in the photic zone (optical properties of the water column; chlorophyll concentration; photosynthetic pigment composition; primary production; bacterial production; phytoplankton and bacterial speciation; concentrations of biogenic trace compounds such as iodocarbons, methyl bromide, dimethyl sulphide/DMS and dimethyl sulphoniopropionate/DMSP; trace gas production; plankton community composition; nutrient concentration; concentrations of trace metals such as iron; salinity; temperature; Dissolved Organic Matter - particulate carbon, nitrogen and phosphorus; phytoplankton growth rates, grazing mortality and viral lysis; ammonium regeneration, nitrification and nitrogen fixation; gross production, net community production and dark community respiration; zooplankton ecology). The fieldwork included two dedicated research cruises in the eastern North Atlantic Ocean, spanning the period April - May 2004. Measurements of nutrient cycling and biological activity were monitored prior to and after deployment (IN stations) of patches fertilised with iron and phosphate relative to several (OUT stations) controls. Measurements were taken using a variety of instrumentation, including conductivity-temperature-depth (CTD) profilers with attached auxiliary sensors and acoustic Doppler current profilers (ADCPs), while incubation chambers were used for shipboard experiments. Samples were collected with Niskin bottles attached to the CTD frame at different depths in the water column and samples analysed onboard or preserved for analysis back in the laboratory. The FeeP data set was intended to advance understanding of how the supply and mutual interactions between iron and phosphate control biological activity and fluxes in the subtropical North Atlantic. The study led by the Plymouth Marine Laboratory (PML) united marine scientists from institutions across the UK and international collaborators. It was funded by the UK Natural Environment Research Council. The data are held at the British Oceanographic Data Centre (BODC) and have been incorporated into the National Oceanographic Database (NODB).

  • The data set comprises measurement of physical and biological oceanographic parameters initially collected as part of the Plankton Monitoring Programme at Station L4 from 1988 onwards. Station L4 located in the English Channel, 10 nautical miles south-west of Plymouth, is one of a series of hydrographic stations in the Western English Channel which have been the basis of a series of hydrographic surveys carried out during the 20th Century by scientists at the Marine Biological Association in Plymouth. In May 2002 sampling expanded to include Station E1, approximately 25 nautical miles south-west of Plymouth. Plankton Monitoring began through the work of the Plymouth Marine Laboratory (PML) Zooplankton Group. A long term time-series of weekly observations has been established by exploiting the activities of the PML small boats (Sepia, Squilla and Plymouth Quest) in a opportunistic way as by-product of their other sampling activities, for example the collection live plankton, sea-water, trawling for fish and squid. Initially no formal research programme or long term funding for the Plankton Monitoring existed but the series was included in NERC Oceans 2025 funding as a Sustained Observatory and continues to be funded under NERC National Capability. The programme has evolved to be known as the Western Channel Observatory (WCO). Although every attempt has been made to standardise methodology and achieve data consistency it is important to recognize that the varied personnel and research objectives that have contributed to this dataset may impact on the nature of the data set.

  • The dataset comprises physical, biogeochemical and biological measurements of water column properties. Hydrographic profiles of water temperature, salinity, fluorescence, turbidity, attenuance, dissolved oxygen and photosynthetically active radiation were collected, and were supplemented by measurements of surface ocean (temperature, salinity, fluorescence, attenuance) and meteorological (air pressure, air temperature, humidity, wind, irradiance) properties, as well as bathymetry. A comprehensive water sampling program provided biogeochemical data including measurements of dimethyl sulphide (DMS), dimethylsulphionopropionate (DMSP), nutrients, halocarbons, methylamines, pigments, radiogeochemistry and dissolved organic carbon (DOC). Biological data were also collected, including samples of viruses, bacteria, phytoplankton, micro- and mesozooplankton. Currents throughout the water column were measured both at fixed locations and across the study area, while Lagrangian experiments provided further current data. The datqa were collected in the northern North Sea between 5th June 1999 and 1st July 1999 during RRS Discovery cruise D241. Hydrographic profiles were collected using a conductivity-temperature-depth (CTD) package with attached auxiliary sensors, an undulating oceanographic recorder (UOR), a vessel-mounted acoustic Doppler current profiler (ADCP), moored ADCP and temperature sensors, and a suite of standard underway hydrographic and meteorological sensors. Water samples for biogeochemical and biological analyses were collected from both the underway system and CTD bottles, while nets were deployed to collect zooplankton samples. Plankton samples were supplemented by respiration experiments conducted during the cruise. The Lagrangian current data were gathered from four drifters and a tracer experiment where the distribution of sulphur hexafluoride (SF6) released from the ship was monitored via water samples collected from the CTD and the underway system. A survey of the region was carried out in order to locate an Emiliania huxleyi bloom suitable for the study and the chosen bloom was labelled with the SF6 tracer. The biogeochemical process study followed the patch as it drifted in a SE direction and was eventually subducted under Norweigian coastal water on 26 June. The study aimed to investigate DMS biogeochemistry within a coccolithophore bloom. The research was organised by NERC's Plymouth Marine Laboratory and involved the University of East Anglia, Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Marine Biological Association, Defence Research Agency, and Southampton Oceanography Centre. Data management support for the project is provided by the British Oceanographic Data Centre (BODC). The dataset is available on CD-ROM and can be requested from BODC.

  • The dataset contains physical, biogeochemical and biological data, including measurements of water temperature, salinity, fluorescence, dissolved gases and current velocities; plankton samples from nets and plankton recorders; water samples for analysis of nutrients, phytoplankton, radioactivity and biogeochemical parameters; benthic cores; meteorological time series (pressure, temperature, humidity, wind velocities); atmospheric samples and ocean-atmosphere fluxes; and results from incubation experiments. The data were collected north of the Crozet Plateau in the Southern Ocean/Southwest Indian Ocean on RRS Discovery cruises D285 (3rd November - 10th December 2004) and D286 (13th December 2004 - 21st January 2005). Much of the data collection focussed on a series of Major Stations (called M1 to M10), with measurements being collected at these stations every two or three days. Conductivity-temperature-depth (CTD) casts were undertaken at each station, providing both hydrographic data and water samples from a range of depths. Other work at each Major Station included zooplankton nets, Longhurst-Hardy Plankton Recorder (LHPR) tows, sediment coring and Argo float deployment. In between Major Stations some additional CTD casts were undertaken. The SeaSoar oceanographic undulator provided further hydrographic data, while hull-mounted acoustic Doppler current profilers (ADCPs) provided current velocity data across the survey area. In addition, continuous underway measurements of hydrographic and meteorological parameters and surface water samples were collected along the cruise track. Five moorings were deployed, one of which was recovered at the end of D286. The other four, including sediment traps, current profilers and CTDs were deployed for one year. CROZEX (CROZet circulation, iron fertilization and Export production experiment) is a complex, multidisciplinary project to examine, from surface to sediment, the structure, causes and consequences of a naturally occurring annual phytoplankton bloom that forms. This collaborative project involved researchers in Ireland and the UK, and was administered by the National Oceanography Centre (NOC), Southampton. Data are managed by the British Oceanographic Data Centre. Much of the CROZEX data processing is ongoing and a number of datasets have yet to be submitted to BODC. The data described here are those presently held by BODC, with the exception of the Argo floats (these data are not expected by BODC and should be accessible via the Argo website) and the four year-long mooring deployments (data from these will be submitted to BODC in the future).

  • The dataset comprises hydrographic profiles (temperature, salinity, oxygen, fluorometer, transmissometer, irradiance) and along track measurements (bathymetry, surface meteorology, sea surface hydrography), with discrete measurements including water chemistry (organic and inorganic nutrients, particulate organic carbon and nitrogen, dissolved gases, trace metals), biology (phytoplankton, zooplankton, primary production, community respiration, chlorophyll, pigments) and atmospheric particulates (major ions, organics and trace metals). Data have been collected from meridional transects of the Atlantic Ocean (between the UK and the Falkland Islands, South Africa or South America) from 1995 to the present day. The Atlantic Meridional Transect (AMT) programme aims to study the factors determining the ecological and biogeochemical variability of planktonic ecosystems in the tropical and temperate Atlantic Ocean, and their links to atmospheric processes. The majority of the data are available to academia for re-use and re-purpose but data from recent cruises may be subject to a moratorium which allows first use for data originators. The AMT is coordinated by Andy Rees (AMT Principal Investigator) and Miss Dawn Ashby (AMT Project Officer) at the Plymouth Marine Laboratory (PML) in conjunction with the National Oceanography Centre. Since its inception the programme has involved researchers from several different countries and has acted as a platform for national and international collaboration. Data are managed by the British Oceanographic Data Centre.

  • The data set comprises a diverse collection of physical, chemical and biological measurements, encompassing well over 1000 parameters. There are data from over 1000 conductivity-temperature-depth (CTD)/rosette stations, over 440 core profiles, over 180 sediment trap samples, over 140 net hauls and much, much more. The primary study area was a box extending to the base of the slope from Vigo to Cap Finistere. However, data are included from both further offshore (filament tracking) and from the Portuguese Margin. Measurements were taken from November 1996 to October 1999 during 33 cruise legs, involving research vessels from seven nations. Data were collected using a variety of equipment and techniques, including expendable bathythermographs (XBTs), turbulence probes, CTDs and oceanographic undulators with auxiliary sensors. These hydrographic profiles were accompanied by net hauls, plankton recorder deployments, sediment cores and a comprehensive water sampling programmes during which a wide variety of chemical and biological parameters were measured. The station data were supplemented by underway measurements of oceanographic and meteorological properties. Results from production and phosphate uptake experiments are also included in the dataset, as are bathymetric data from multibeam (swath) surveys, coastal upwelling measurements and data from moored instruments and benthic landers. The dataset also includes imagery from satellites, seabed photography and X-ray photographs of core samples. The aim of the project was study biogeochemical processes at the shelf break and to quantify the fluxes of material between the shelf and the open ocean. The project brought together over 100 scientists from 40 research centres and universities throughout Europe. The British Oceanographic Data Centre (BODC) is assembling the data sets collected during OMEX II into its project database system and the data set is also available on CD-ROM.