From 1 - 6 / 6
  • This dataset is a fine resolution 2018 land cover map of the headwaters region of the Welland River Catchment, UK, projected in British national grid. It has a spatial resolution of 10m and thematic resolution of 10 classes. The map covers a 340km2 region across the English counties of Leicestershire, Rutland and Northamptonshire with predominantly agricultural land use. Full details about this dataset can be found at https://doi.org/10.5285/63b748ee-22a4-42ca-8a34-20321f6ab8af

  • The data contains Aerial imagery of Ynyslas Dunes, Wales saved in a GeoTiff format. The imagery covers 8000 m2 of a discrete coastal sand dune at northern distal end of a spit in Dyfi National Nature Reserve. Data was collected during a six-minute flight on 5th February 2020 made by a DJI Mavic Pro 2 uncrewed aerial vehicle (UAV). The flight was planned with Pix4DCapture based on a ground pixel resolution of 0.01 m. Lateral and longitudinal overlap was set to 80%. Prior to flying, eight (5.8 per 100 photos) Ground Control Points (GCPs) were evenly distributed throughout the dune and their location surveyed using a differential global positioning system (DGPS). Orthorectification and mosaicking of the aerial imagery collected was performed using Pix4Dmapper utilising a fully automated workflow based on Structure-from-Motion (SFM) digital photogrammetry algorithms. The data was collected to test the accuracy and repeatability of bare sand and vegetation cover in dunes mapped from aerial imagery. Data was collected and processed by Dr Ryan Wilson (University of Huddersfield) and interpreted by Dr Thomas Smyth (University of Huddersfield). The work was supported by the Natural Environment Research Council NE/T00410X/1. Full details about this dataset can be found at https://doi.org/10.5285/ac7071cb-79a3-400d-9f17-13dc4a657083

  • [This dataset is embargoed until December 1, 2023]. This data contains values of bare sand area, modelled wind speed, aspect and slope at a 2.5 m spatial resolution for four UK coastal dune fields, Abberfraw (Wales), Ainsdale (England), Morfa Dyffryn (Wales), Penhale (England). Data is stored as a .csv file. Data is available for 620,756.25 m2 of dune at Abberfraw, 550,962.5 m2 of dune at Ainsdale, 1,797,756.25 m2 of dune at Morfa Dyffryn and 2,275,056.25 m2 of dune at Penhale. All values were calculated from aerial imagery and digital terrain models collected between 2014 and 2016. For each location, areas of bare sand were mapped in QGIS using the semi-automatic classification plugin (SCP) and the minimum distance algorithm on true-colour RGB images. The slope and aspect of the dune surface at each site was calculated in QGIS from digital terrain models. Wind speed at 0.4 m above the surface of the digital terrain model at each site was calculated using a steady state computational fluid dynamics (CFD). Data was collected to statistically test the relationship between bare sand and three abiotic physical factors on coastal dunes (wind speed, dune slope and dune slope aspect). Vertical aerial imagery was sourced from EDINA Aerial Digimap Service and digital terrain models from EDINA LIDAR Digimap Service. Wind speed data was generated and interpreted by Dr Thomas Smyth (University of Huddersfield). Full details about this dataset can be found at https://doi.org/10.5285/972599af-0cc3-4e0e-a4dc-2fab7a6dfc85

  • [This dataset is embargoed until May 1, 2023]. The data was produced as part of a study to determine human impacts on river planform change within the context of short- and long-term river channel dynamics. To this end, the Himalayan Sutlej-Beas River system was used as a case study to (i) systematically assess changes in river planform characteristics over centennial, annual, seasonal, and episodic timescales; (ii) connect the observed patterns of planform change to human-environment drivers and interactions; and (iii) conceptualise these geomorphic changes in terms of timescale-dependant evolutionary trajectories. The dataset was derived from historic maps (1847-1850) and remote sensing data (Landsat over a 30-year period). It comprises post monsoon season wet river area annually 1989-2018, post monsoon season active gravel bars annually 1989-2018, active channel area (maximum extent between 1989-2018), active channel width annually 1989-2018, active channel width assessed from historic map (1847–1850), and the Anabranching index, annually 1989-2018. The work was supported by the Natural Environment Research Council (Grant NE/S01232X/1). Full details about this dataset can be found at https://doi.org/10.5285/f7aada06-7352-44c0-988e-2f4b31690189

  • [This dataset is embargoed until May 1, 2023]. The data comprises river section, zone and test site delineation, winter Season average NDVI by section and zone 1989-2020, land cover maps seasonally 1989-2020, and derived land cover fractions by section and zone 1989-2020. The data was produced as part of a study to determine how changes in geomorphic form and dynamics due to human alteration to river flows and riparian land management relate to changes in vegetation communities in the Sutlej and Beas Rivers, India. Vegetated and other land cover, including water area, were quantified by winter season NDVI trends (in the plains of Punjab) and seasonal supervised classification of Landsat data for over a 30-year period. The work was supported by the Natural Environment Research Council (Grant NE/S01232X/1). Full details about this dataset can be found at https://doi.org/10.5285/9a96e199-34d0-46f9-9a64-140d300a2531

  • Data provided are monthly surface water layers extracted from Sentinel1A SAR data for 3 districts in India (Shivamogga, Sindhudurg, Wayanad) for the year 2017 and 2018. Surface water body layers were mapped using an average monthly threshold value extracted from the image backscatter histogram. The average threshold value excluded the monsoon months due to the difference in water and not water area. The threshold value was slightly lesser than the mean threshold value. The end product was validated using field data which resulted in user and producer accuracies. Monthly surface water body layers were not produced for a few months due to the non-availability of Sentinel 1 data. The work was supported by MRC, AHRC, BBSRC, ESRC and NERC [grant number MR/P024335/1] and NERC - SUNRISE project [grant number NE/R000131/1] Full details about this dataset can be found at https://doi.org/10.5285/3c23fea1-5b27-4b01-b9ef-fc13346cfedc