From 1 - 6 / 6
  • This data set is part of the ESA Greenland Ice sheet CCI project. The data set provides surface elevation changes (SEC) for the Greenland Ice sheet derived from SARAL-AltiKa for 2013-2017. This new experimental product of surface elevation change is based on data from the AltiKa-instrument onboard the France (CNES)/Indian (ISRO) SARAL satellite. The AktiKa altimeter utilizes Ka-band radar signals, which have less penetration in the upper snow. However, the surface slope and roughness has an imprint in the derived signal and the new product is only available for the flatter central parts of the Greenland ice sheet. The corresponding SEC grid from Cryosat-2 is included for comparison. The algorithm used to devive the product is described in the paper “Implications of changing scattering properties on the Greenland ice sheet volume change from Cryosat-2 altimetry” by S.B. Simonsen and L.S. Sørensen, Remote Sensing of the Environment, 190,pp.207-216, doi:10.1016/j.rse.2016.12.012. The approach used here corresponds to Least Squares Method (LSM) 5 described in the paper, in which the slope within each grid cell is accounted for by subtraction of the GIMP DEM; the data are corrected for both backscatter and leading edge width; and the LSM is solved at 1 km grid resolution (2 km search radius) and averaged in the post-processing to 5 km grid resolution and with a correlation length of 20 km.

  • As part of the European Space Agency's (ESA) Sea Level Climate Change Initiative (CCI) project, a multi-satellite merged time series of monthly gridded Sea Level Anomalies (SLA) has been produced from satellite altimeter measurements. The Sea Level Anomaly grids have been calculated after merging the altimetry mission measurements together into monthly grids, with a spatial resolution of 0.25 degrees. This version of the product is Version 2.0. The following DOI can be used to reference the monthly Sea Level Anomaly product: DOI: 10.5270/esa-sea_level_cci-MSLA-1993_2015-v_2.0-201612 The complete collection of v2.0 products from the Sea Level CCI project can be referenced using the following DOI: 10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612 When using or referring to the Sea Level cci products, please mention the associated DOIs and also use the following citation where a detailed description of the Sea Level_cci project and products can be found: Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67-82, doi:10.5194/os-11-67-2015, 2015. For further information on the Sea Level CCI products, and to register for these projects please email: info-sealevel@esa-sealevel-cci.org

  • As part of the European Space Agency's (ESA) Sea Level Climate Change Initiative (CCI) Project, Fundamental Climate Data Records (FCDRs) have been computed for all the altimeter missions used within the project. These FCDR's consist of along track values of sea level anomalies and altimeter standards for the period between 1993 and 2015. This version of the product is v2.0. The FCDR's are mono-mission products, derived from the respective altimeter level-2 products. They have been produced along the tracks of the different altimeters, with a resolution of 1Hz, corresponding to a ground distance close to 6km. The dataset is separated by altimeter mission, and divided into files by altimetric cycle corresponding to the repetivity of the mission. When using or referring to the Sea Level cci products, please mention the associated DOIs and also use the following citation where a detailed description of the Sea Level_cci project and products can be found: Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67-82, doi:10.5194/os-11-67-2015, 2015. For further information on the Sea Level CCI products, and to register for these projects please email: info-sealevel@esa-sealevel-cci.org

  • This dataset contains various global lake products (1992-2019) produced by the European Space Agency (ESA) Lakes Climate Change Initiative (Lakes_cci) project. Lakes are of significant interest to the scientific community, local to national governments, industries and the wider public. A range of scientific disciplines including hydrology, limnology, climatology, biogeochemistry and geodesy are interested in distribution and functioning of the millions of lakes (from small ponds to inland seas), from the local to the global scale. Remote sensing provides an opportunity to extend the spatio-temporal scale of lake observation. The five thematic climate variables included in this dataset are: • Lake Water Level (LWL): a proxy fundamental to understand the balance between water inputs and water loss and their connection with regional and global climate changes. • Lake Water Extent (LWE): a proxy for change in glacial regions (lake expansion) and drought in many arid environments, water extent relates to local climate for the cooling effect that water bodies provide. • Lake Surface Water temperature (LSWT): correlated with regional air temperatures and a proxy for mixing regimes, driving biogeochemical cycling and seasonality. • Lake Ice Cover (LIC): freeze-up in autumn and advancing break-up in spring are proxies for gradually changing climate patterns and seasonality. • Lake Water-Leaving Reflectance (LWLR): a direct indicator of biogeochemical processes and habitats in the visible part of the water column (e.g. seasonal phytoplankton biomass fluctuations), and an indicator of the frequency of extreme events (peak terrestrial run-off, changing mixing conditions). Data generated in the Lakes_cci project are derived from data from multiple instruments and multiple satellites including; TOPEX/Poseidon, Jason, ENVISAT, SARAL, Sentinel, Landsat, ERS, Terra/Aqua, Suomi NPP, Metop and Orbview. For more information please see the product user guide in the documents.

  • As part of the European Space Agency's (ESA) Sea Level Climate Change Initiative (CCI) project, a number of oceanic indicators of mean sea level changes have been produced from merging satellite altimetry measurements of sea level anomalies. The oceanic indicators dataset consists of static files covering the whole altimeter period, describing the evolution of the project's monthly sea level anomaly gridded product (see separate dataset record). The oceanic indicators that are provided are: 1) the temporal evolution of the global Mean Sea Level (MSL) DOI: 10.5270/esa-sea_level_cci-IND_MSL_MERGED-1993_2015-v_2.0-201612 ; 2) the geographic distribution of Mean Sea Level changes (MSLTR) DOI: 10.5270/esa-sea_level_cci-IND_MSLTR_MERGED-1993_2015-v_2.0-201612 ; 3) Maps of the amplitude and phase of the annual cycle (MSLAMPH) DOI: 10.5270/esa-sea_level_cci-IND_MSLAMPH_MERGED-1993_2015-v_2.0-201612. The complete collection of v2.0 products from the Sea Level CCI project can be referenced using the following DOI: 10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612. When using or referring to the SL_cci products, please mention the associated DOIs and also use the following citation where a detailed description of the SL_cci project and products can be found: Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67-82, doi:10.5194/os-11-67-2015, 2015. For further information on the Sea Level CCI products, and to register for these products please email: info-sealevel@esa-sealevel-cci.org

  • This dataset contains various global lake products (1992-2019) produced by the European Space Agency (ESA) Lakes Climate Change Initiative (Lakes_cci) project. This is version 1.1 of the dataset. Lakes are of significant interest to the scientific community, local to national governments, industries and the wider public. A range of scientific disciplines including hydrology, limnology, climatology, biogeochemistry and geodesy are interested in distribution and functioning of the millions of lakes (from small ponds to inland seas), from the local to the global scale. Remote sensing provides an opportunity to extend the spatio-temporal scale of lake observation. The five thematic climate variables included in this dataset are: • Lake Water Level (LWL): a proxy fundamental to understand the balance between water inputs and water loss and their connection with regional and global climate changes. • Lake Water Extent (LWE): a proxy for change in glacial regions (lake expansion) and drought in many arid environments, water extent relates to local climate for the cooling effect that water bodies provide. • Lake Surface Water temperature (LSWT): correlated with regional air temperatures and a proxy for mixing regimes, driving biogeochemical cycling and seasonality. • Lake Ice Cover (LIC): freeze-up in autumn and advancing break-up in spring are proxies for gradually changing climate patterns and seasonality. • Lake Water-Leaving Reflectance (LWLR): a direct indicator of biogeochemical processes and habitats in the visible part of the water column (e.g. seasonal phytoplankton biomass fluctuations), and an indicator of the frequency of extreme events (peak terrestrial run-off, changing mixing conditions). Data generated in the Lakes_cci project are derived from data from multiple instruments and multiple satellites including; TOPEX/Poseidon, Jason, ENVISAT, SARAL, Sentinel, Landsat, ERS, Terra/Aqua, Suomi NPP, Metop and Orbview. For more information please see the product user guide in the documents.