Keyword

Salinity of the water column

1007 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
From 1 - 10 / 1007
  • The data set comprises temperature and salinity hydrocasts collected across the North Atlantic Ocean between 1910 and 1990. The measurements were collected by nine North Atlantic Ocean Weather Ships (OWS): OWS Alpha (1954 – 1974); OWS Bravo (1928 – 1974); OWS Charlie (1910 – 1982); OWS Echo (1910 – 1979); OWS India (1957 – 1975); OWS Juliet (1950 – 1975); OWS Kilo (1949 – 1973); OWS Lima (1948 – 1990); OWS Mike (1948 – 1982). This data set also includes measurements collected close to the general positions prior to the stationing of the Weather ships for the OWS Bravo, Charlie and Echo stations. Data from OWS Alpha, Bravo, Echo, India, Juliett and Kilo have been taken from the US National Oceanographic Data Center (NODC) compilations whereas those from OWS Charlie, Lima and Mike have been constructed from both the US NODC and International Council for the Exploration of the Seas (ICES) data holdings. In addition a daily averaged data set for OWS Charlie is available for the period 1975 - 1985 (supplied by Syd Levitus). This data set was supplied to the British Oceanographic Data Centre (BODC) by ICES. Additional files and more recent data can be acquired from the ICES website.

  • This dataset is comprised of CTD temperature, salinity and potential temperature collected using seal tags. Data were collected as part of the NERC-funded project 'Ocean processes over the southern Weddell Sea shelf using seal tags'. Data were not collected as part of a cruise as seals were used as data activity platforms. 20 Weddell seals were tagged at the eastern end of the shelf-break north of the Filchner-Ronne Ice Shelf between 11 February 2011 and 03 May 2011. The aims of the project were: 1. The resulting data from the seals’ dives will provide the most comprehensive picture to date of the ocean conditions over the southern Weddell Sea continental shelf. 2. By mapping the temperature of the water near the sea floor it will be possible to determine the locations where dense waters leave the shelf, and the processes involved: either a direct flow down the slope under gravity, or initially mixing at the shelf edge with waters from off the shelf before descending down the slope. 3. To determine where the source waters come onto the shelf. 4. Though the research was primarily oceanographic, the movements and diving behaviour provide insight to seal biologists studying the animals' beahviour. Data were collected as part of NERC standard grants NE/G014086/1 and NE/G014833/1. NE/G014086/1 was the lead grant and was led by Dr Keith William Nicholls of NERC British Antarctic Survey, Science Programmes and runs from 01 April 2010 to 31 December 2018. The secondary grant, NE/G014833/1, was led by Professor Michael Fedak of University of St Andrews, Sea Mammal Research Unit and runs from 01 October 2010 to 28 February 2014. The seal tag CTD data have been received by BODC and are currently available in original format upon request.

  • Sea surface temperature and salinity data have been collected around British coastal waters and in the North Atlantic between 1963 and 1990. The data were collected by ships regularly plying routes between ports in the British Isles and the Continent, and along routes to the North Atlantic Ocean Weather Stations (OWS). Thirty individual shipping routes have been involved, approximately weekly measurements being taken at intervals ranging from 10 to 50 miles depending on the route. The following list details shipping routes and dates of data collection: Bristol - Finistere (Jan 1963 - Nov 1968); Clyde - OWS Alpha (May 1963 - Feb 1974); Clyde - OWS India (Jan 1963 - Jul 1975); Clyde - OWS Juliet (Jan 1963 - Jul 1975); Clyde - OWS Kilo (Mar 1963 - Dec 1972); Clyde - OWS Lima (Mar 1963 - May 1965, Jul 1975 - Dec 1990); Felixstowe - Rotterdam (Aug 1970 - Dec 1990); Fishguard - Cork (Jan 1963 - Oct 1968); Fishguard - Waterford (Jan 1963 - Dec 1966); Folkstone - Boulogne (Jan 1963 - Aug 1966); Heysham - Belfast (Feb 1965 - May 1977); Holyhead - Kish (Jan 1963 - Feb 1966); Hull - Kristiansand (Jan 1963 - May 1976); Larne - Stranraer (Jan 1963 - Feb 1966, Jan 1971 - Dec 1986); Leith - Bremen (Jan 1963 - Apr 1972); Leith - Copenhagen (Jan 1963 - Mar 1968); Liverpool - Belfast (Dec 1970 - Nov 1978); Liverpool - Douglas (Mar 1965 - Nov 1968); Liverpool - Dublin (Mar 1965 - Aug 1979); Liverpool - Larne (Jan 1987 - Dec 1988); Newhaven - Dieppe (Apr 1963 - Feb 1990); Scilly - Shamrock (May 1967 - Mar 1974); Southampton - Le Havre (Jan 1963 - May 1964); Southampton - St. Malo (May 1963 - Sep 1964); Swansea - Cork (May 1970 - Mar 1979); Weymouth - Channel Islands (Nov 1970 - Nov 1985); Weymouth - Cherbourg (Apr 1986 - Sep 1986); Whitehaven - Anglesey (Feb 1965 - Jan 1969). These observations provide useful information on the seasonal and short-term variability of temperature off-shore, and may enhance our knowledge regarding extreme values. The data were collected on behalf of the Ministry of Agriculture, Fisheries and Food, Lowestoft Fisheries Laboratory and are stored at the British Oceanographic Data Centre.

  • A novel temperature dataset for northern high latitude Seas (ATLAS) is a dataset of three-dimensional temperature derived from combining quality controlled Argo float measurements with marine mammal mounted Satellite Relay Data Loggers (SRDLs) profiles. Using data values gathered from across the North Atlantic region, a 1×1 degree gridded temperature dataset of the average monthly values from January 2004 to December 2008, with 15 vertical layers between 0–700 m was produced. Built as complementary to existing ship-based fields, the ATLAS dataset is a community resource to help determine the impacts of climate change on the Labrador and Nordic Seas regions. The data were collated by the National Oceanography Centre (NOC) and are made available from the British Oceanographic Data Centre (BODC).

  • This dataset contains Radium (Ra) and Iron (Fe) concentrations along with supporting oceanographic measurements such as temperature and salinity of the water column. Data are from glacial melt waters around the West Antarctic Peninsula and Greenland as well as from the open southern ocean and at hydrothermal vents along the Mid-Atlantic Ridge. The data were collected for the Radium in Changing Environments: A Novel Tracer of Iron Fluxes at Ocean Margins (RaCE:TraX) project. The RaCE:TraX project is running between June 2017 and June 2022 and uses measurements of Radium (Ra) and Iron (Fe) along with knowledge of the half-life of Ra to predict supply and removal rates of Fe in the marine environment. The results hope to answer the questions 1) how much Fe comes from continental shelf sediments, 2) how much Fe is supplied by glacial meltwater, and 3) how rapidly is Fe scavenged from the metal-rich fluids at hydrothermal vents? Addressing these key gaps in the understanding of the marine Fe cycle will help determine how sensitive marine systems are to current Fe supply, as well as predict the impacts of changes in Fe supply on phytoplankton health, the biological pump, and global climate. The project is led by the University of Southampton School of Ocean and Earth Science and is a collaboration with the University of Bristol. The project received funding from the Natural Environmental Research Council (NERC, grant reference number: NE/P017630/1).

  • The UK Argo programme data set comprises measurements of ocean temperature and salinity and provides information of surface and subsurface Lagrangian (measuring movement by tracing the path of a passively drifting object) displacement enabling the derivation of currents. The data set includes a mixture of near-real-time (quality controlled to operational ocean forecasting standards) and delayed mode (quality controlled to climate research standards) data collected by profiling floats. The UK floats from part of a global array throughout the world oceans. Real-time data are available within 24 hours of the float surfacing while delayed mode data become available within 12 months of the profile date. Floats drift at their parking depth (between 1000m and 2025m) for 5 or 10 days depending on float programming. Traditionally floats measured temperature and conductivity at regular intervals during their rise to the surface. In October 2007, the Argo programme achieved its goal to have (and maintain) more than 3000 active floats. As of 2012, some newly deployed floats are being programmed to collect data whilst drifting at their parking depth and during their ascent and additional oceanographic parameters, for example fluorescence, optical backscatter, and dissolved oxygen are being trialled for inclusion in the data set. The data has a variety of uses including assimilation into operational weather forecasts in near-real-time to climate research with the delayed mode data. The data set also includes Argo floats deployed by Mauritius, Saudi Arabia (one float in the Red Sea) Ireland and Portugal, as the British Oceanographic Data Centre manages the data from these floats in addition to those of the UK Argo programme.

  • This dataset contains measurements of temperature, salinity, raised/non-raised mackerel egg numbers, raised/non-raised horse mackerel egg numbers as well as adult fish total length, weight, maturity and sex. Data were obtained on the RV Bjarni Sæmundsson which sampled North of Scotland to Iceland. The project altogether obtained data along the Portuguese coast from February and continued until July to the waters west of Scotland. The egg survey was carried out from the 02/05/2016 to 13/05/2016 with the adult mackerel sampling taking place on 11/05/2016. A total of 4 pelagic trawl hauls were carried out to collect adult mackerel samples using a pelagic WB trawl. Sampling of the fish eggs was carried out with a High Speed Plankton Sampler Gulf VII, which had a 280 micron mesh sized net and an opening diameter of 20cm. A small skrips-depressor of 30 kg was also attached to the sampler. Water filtered during each haul was measured using an internal Valeport electronic flowmeter. An external flowmeter was in turn mounted on the frame, as well as a Seabird 911 plus CTD attached with an altimeter, which measured depth, temperature and salinity. Samples were sorted for fish eggs using the spray method and mackerel eggs were staged according to the sampling protocol. For quality assurance, 10% of the samples were checked and sorted again. All eggs were counted and identified to species level. The data were obtained as a part of an international Atlantic survey, carried out by 10 different European institutes to monitor the spatial and seasonal distribution of Atlantic mackerel and horse mackerel. Planning and coordination of the survey was made within the ICES Working Group for Mackerel and Horse Mackerel Egg Surveys (WGMEGS). In 2016 the following countries participated in this survey: The Faroes, Denmark, Germany, Ireland, Norway, Portugal, Scotland, Spain, the Netherlands and Iceland. The data present here has been obtained by Marine Research Institute in Iceland.

  • This dataset contains visual and physical analyses of the impacts of ocean acidification on the skeletons of the cold-water coral <em>Lophelia pertusa</em>. Visual analysis includes synchrotron images from the Diamond Light Source and electron back scatter diffraction images on polished coral skeletons. Physical analyses include Raman spectroscopy data. Skeletal samples analysed were from the Southern California Bight (SCB), USA, and the Mingulay Reef Complex (MRC), UK. SCB samples were collected in 2010, 2014 and 2015. MRC samples were collected in 2012. Samples from the SCB were taken using a ROV at varying depths covering an environmental gradient with respect to aragonite saturation. Each sample represents an aggregation of <em>Lophelia pertusa</em> that was sampled with a basket attached to the ROV. The samples were transported to the surface and subsampled for live, ethanol preserved, frozen, and dried samples. Carbonate chemistry parameters of the water column were collected at the same time using a CTD and include temperature, salinity, oxygen, DIC, pH, and total alkalinity. Coral samples from the MRC were subjected to long term experimentation in projected future conditions. The conditions for MRC samples are outlined in Hennige et al. 2015. The coral samples were also analysed using a Scanning Electron Microscope (SEM) and these images are held at BODC and can be requested through this record. RAMAN spectroscopy and Electron Back Scatter Diffraction (EBSD) analysis was also used to further examine the corals under future projections of climate change. Ocean acidification is a threat to cold-water coral reefs in terms of dissolution to their skeletons, and their subsequent structural stability. This will likely determine the stability of the habitats they form. Work in the Southern California Bight was funded by the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science. The study was supported by Diamond Light Source (DLS) experimental campaigns MT19794 and MT20412. This work was supported by an Independent Research Fellowship from the Natural Environment Research Council (NERC) to Sebastian Hennige (NE/K009028/1 and NE/K009028/2) and the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland), funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. Experimental incubations for N. Atlantic corals were supported by the UK Ocean Acidification programme (NE/H017305/1 awarded to John Murray Roberts). Imaging analysis by Uwe Wolfram and Alexander Groetsch were supported by Engineering and Physical Sciences Research Council (EPSRC) of the UK under grant number EP/P005756/1.

  • The data set includes Sea Rover undulating oceanographic recorder data, including temperature, salinity and chlorophyll profiles. The data were collected in the North Atlantic during the 1980s. Data collection was undertaken along numerous sections between 1981 and 1987, as follows: 1981 - 5 sections and polar front box survey; 1983 - 5 sections and polar front box survey; 1984 - 6 sections; 1985 - 3 sections; 1986 - 4 sections; 1987 - 2 sections. The sections vary in length between 500 and 1000 miles and the data includes a number of repeated traverses between the Azores and the Ocean Weather Ship at Station 'Charlie'. The data were collected by the Institut fur Meereskunde, Kiel and have been assembled by the British Oceanographic Data Centre.

  • The dataset consists of temperature, salinity and sea surface height data generated from a 40 year run of the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) numerical model. The dataset consists of 41 data files in Climate and Forecast (CF) compliant NetCDF format. The data are supplied as a gridded dataset covering the entire northwest European continental shelf and extending out into the Atlantic Ocean. The grid resolution varies from 7.8 km to 14.2 km along the longitudinal axis and is at 12.3 km on the latitudinal axis. The model contains 40 depth layers. The model run was from 01 January 1964 to 31 December 2004 and the generated data were averaged over a 25 hour tidal cycle to create daily mean values. The data were generated from the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) numerical model. The model simulations were run on the HECTOR supercomputer managed by the University of Edinburgh. The dataset was generated to look at multi-decadal variability and trends in temperature of the northwest European continental shelf. The data were generated by the National Oceanography Centre (NOC) Liverpool as part of Natural Environment Research Council (NERC) National Capability (NC) funding.