From 1 - 10 / 20
  • As part of the International Thwaites Glacier Collaboration (ITGC) ~9540 km of new airborne gravity data was acquired by the British Antarctic Survey, including ~6200 km over the Thwaites Glacier catchment. Data was collected using an iCORUS strap-down airborne gravimeter system mounted on the BAS aerogeophysical equipped survey aircraft VP-FBL. The survey operated from Lower Thwaites Glacier camp, and focused on collecting data between 70 and 180 km from the grounding line. Additional profiles from the coast to the Western Antarctic Ice Sheet (WAIS) divide and over the eastern shear margin were also flown. Navigation, aircraft attitude, sensor temperature, initial and levelled free air gravity anomalies are provided as an ASCI table. The Thwaites 2019/20 aerogeophysical survey was carried out as part of the BAS National Capability contribution to the NERC/NSF International Thwaites Glacier Collaboration (ITGC) program. Data processing was supported by the BAS Geology and Geophysics team.

  • Aeromagnetic data provides important constraints on the sub-surface geology of a region. This dataset contains aeromagnetic line data collected by the British Antarctic Survey during the second aerogeophysical survey carried out as part of the International Thwaites Glacier Collaboration (ITGC). Data were collected using a caesium magnetometer system, and have been corrected to total field values following the approach laid out by the SCAR ADMAP working group (https://www.scar.org/science/admap/about/). In total 8688 km of data is presented, of this ~6052 km was collected in the main survey area, while other data was collected on input transit flights. The aircraft used was the BAS aerogeophysicaly equipped twin otter VP-FBL. Data are available as an ASCII table (.csv). The Thwaites 2019/20 aerogeophysical survey was carried out as part of the BAS National Capability contribution to the NERC/NSF International Thwaites Glacier Collaboration (ITGC) program. Data processing was supported by the BAS Geology and Geophysics team.

  • A map of changes in ice surface speed in metres/year for Thwaites Glacier, West Antarctica, between January 2012 and January 2021. Speeds based on feature tracking of satellite synthetic aperture radar data. The work was funded by NERC projects NE/P011365/1 and NE/S006605/1.

  • Two maps of surface elevation change for Thwaites Glacier, West Antarctica. Change is in metres between 2013-12-21 and 2017-07-11, and between 2017-07-11 and 2020-11-02. The work was funded by NERC projects NE/P011365/1 and NE/S006605/1.

  • Aeromagnetic data provides important constraints on the sub-surface geology of a region. This dataset contains aeromagnetic line data collected by the British Antarctic Survey as part of the International Thwaites Glacier Collaboration (ITGC). Data were collected using a caesium magnetometer system, and have been corrected to total field values following the approach laid out by the SCAR ADMAP working group https://www.scar.org/science/admap/about/. Across flow flights were generally flown at a constant altitude ~450 m above the ice surface, but data was also collected along draped sections flown along the ice flow direction. In total 9872 km of data is presented, of this 6033 km was collected in the main survey area, while other data was collected on input transit flights. The aircraft used was the BAS aerogeophysicaly equipped twin otter VP-FBL. Data are available in ASCII file format (.xyz).

  • Variability in temperature, salinity and velocity was observed approximately 1.5 m beneath the base of Thwaites Glacier in the grounding zone region of the Eastern Ice Shelf as part of the International Thwaites Glacier Collaboration MELT project. Using a borehole deployable turbulence instrument cluster, the average temperature, salinity and velocity was observed over a 15-minute period every 2 hours. Funding was provided by NSFPLR-NERC: Melting at Thwaites grounding zone and its control on sea level (THWAITES-MELT) NE/S006761/1.

  • A time series of surface ice flow speed at a point on Thwaites Glacier, West Antarctica. The point is on grounded ice and is upstream of a sub-shelf cavity on the west flank of the fast-moving core of Thwaites Glacier. There are a total of 589 points. First column = yyyy-mm-dd, second column = speed in kilometres per year. The work was funded by NERC projects NE/P011365/1 and NE/S006605/1.

  • A time series of surface elevation at a point on Thwaites Glacier, West Antarctica. The point is on grounded ice and is upstream of a sub-shelf cavity on the west flank of the fast-moving core of Thwaites Glacier. There are a total of 88 points. First column = yyyy-mm-dd, second column = elevation in metres. The work was funded by NERC projects NE/P011365/1 and NE/S006605/1.

  • This dataset contains measurements of snow accumulation over an 11-month period in 2016 at six sites in the Pine Island-Thwaites Glacier catchment of West Antarctica. The sites were visited on two occasions, the first in January 2016 and the second in December 2016. The accumulation rate at each site was calculated using an average density profile, based on a compilation of six low elevation sites on Pine Island Glacier (iSTAR sites 15-19, and 22; Morris et al., 2017) that are situated nearby. The average density for the top metre based on this compilation is 419 kg m-3. Further details are provided in the associated publication.

  • Aerogravity data has an important role to play in constraining sub-surface geology under grounded ice and bathymetry beneath floating ice shelves. This dataset contains aerogravity collected by the British Antarctic Survey as part of the International Thwaites Glacier Collaboration (ITGC). Data were collected using both a traditional stabilised platform approach, and a more modern strapdown gravity system. Flights were flown at a constant altitude ~450 m above the ice surface where surface topography was flat. Gravity data is also recovered along draped sections by the strapdown system. In total 9872 km of data is presented, of this 6033 km was collected in the main survey area, while other data was collected on input and output transit flights. The aircraft used was the BAS twin otter VP-FBL equipped for aerogeophysical surveys. Data are available in ASCII file format (.xyz). Three databases are provided with aerogravity data: one with the Strapdown processing flow, a second with the LaCoste & Romberg processing flow, and a final simplified database with the optimal free air gravity anomalies from the strapdown system.