From 1 - 3 / 3
  • This data assesses the ability of 8 species, from 7 classes representing a range of functional groups, to survive, for 100 to 303 days, at temperatures 0 to 4 degrees Celsius above previously calculated long-term temperature limits. Survivors were then tested for acclimation responses to acute warming. Acclimatisation in the field was tested in the seastar Odontaster validus collected in different years, seasons and locations within Antarctica. Finally, we tested the importance of oxygen limitation in controlling survival duration by incubating 7 species under normoxia (20%) and mild hyperoxia (30%). This study was funded by Natural Environment Research Council core funding to the British Antarctic Survey and Spitfire DTP funding to R.E.S.

  • A dataset of acclimation potential of terrestrial, freshwater and marine ectotherms across latitudes collected from the literature spanning the time period 1960 to 2015 with the aim to test the importance of physiological acclimation as a mechanism to buffer species against climate warming. The projected rate of environmental warming is used to calculate how many years and generations acclimation capacity will afford each species before it will exceed its thermal maximum. Acclimation capacity, generation time, latitudinal range extent and projected rate of warming are then combined into an index of vulnerability. This data together with critical thermal maxima of the ectotherms are presented here.

  • This dataset has been superseded by the dataset https://doi.org/10.5285/20010bfb-c6d3-430f-b1f7-d16790ab8359. A dataset of acclimation potential of terrestrial, freshwater and marine ectotherms across latitudes collected from the literature spanning the time period 1960 to 2015 with the aim to test the importance of physiological acclimation as a mechanism to buffer species against climate warming. The projected rate of environmental warming is used to calculate how many years and generations acclimation capacity will afford each species before it will exceed its thermal maximum. Acclimation capacity, generation time, latitudinal range extent and projected rate of warming are then combined into an index of vulnerability. This data together with critical thermal maxima of the ectotherms are presented here.