From 1 - 10 / 22
  • Aeromagnetic data collected as part of the seven nation Antarctica''s Gamburtsev Province (AGAP) expedition during the International Polar Year 2007-2009, and used to acquire a detailed image of the ice sheet bed deep in the interior of East Antarctica. Airborne geophysical methods were used to understand the fundamental structure shrouded beneath Dome A. Two twin Otter aircraft - one BAS, one United States Antarctic Program (USAP) - equipped with ice-sounding radars, laser ranging systems, gravity meters and magnetomemeters, operated from camps located on either side of Dome A.

  • During the 2001-02 field season a regional survey was flown on a 10 km line spacing grid over the drainage basin of the Rutford Ice stream (West Antarctica), as part of the TORUS (Targeting ice stream onset regions and under-ice systems) project. We present here the bed elevation picks from airborne radar depth sounding collected using the "BAS-built" radar depth sounding system mounted on the BAS aerogeophysical equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data

  • A British Antarctic Survey Twin Otter and survey team acquired 15,500 line-km of aerogeophysical data during the 2001/02 Antarctic field season along a 1-km line spacing grid with tie-lines 8 km apart. Twenty-five flights were flown from the South African base SANAE, for a total of 100 survey hours. We present here the processed bed elevation picks from airborne radar depth sounding. The airborne-radio echosounding data were collected for 5 flights, to image ice-thickness and bedrock configuration. Data are provided as XYZ ASCII line data. This high-resolution aerogeophysical survey was part of the "Magmatism as a Monitor of Gondwanabreak-up" project (MAMOG) of the British Antarctic Survey, which included new geochemical investigations, structural geology, geochronology, and AMS studies over western Dronning Maud Land.

  • During the austral summer of 2001/02 five thousand line kilometres of airborne radio echo sounding and aeromagnetic data were collected in the region of three tributaries of Slessor Glacier, East Antarctica, which drains into the Filchner Ice Shelf. We present here the processed bed elevation picks from airborne radar depth sounding acquired using the BAS aerogeophysicaly equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data. Data were collected as part of UK Natural Environment Research Council (NERC) grant GR3/AFI2/65

  • An airborne radar survey was flown as part of the seven nation Antarctica''s Gamburtsev Province (AGAP) expedition over the Gamburtsev Subglacial Mountains, Dome A, and the interior of East Antarctica during the International Polar Year 2007-2009. Operating from field camps located on either side of Dome A (namely AGAP-N and AGAP-S), we collected ~120,000 km (equivalent to 180,000 km2) of airborne survey data using two Twin Otter aircrafts - one from BAS and one from the United States Antarctic Program (USAP). The aircrafts were equipped with dual-frequency carrier-phase GPS for navigation, laser ranging systems, magnetometers, gravity meters, and ice-sounding radars. We present here the full radar dataset from the BAS PASIN radar system consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • This dataset contains bed and surface elevation picks derived from airborne radar collected in 2016/17 over the Filchner Ice Shelf and Halley Ice Shelf (West Antarctica) as part of the 5-year Filchner Ice Shelf System (FISS) project funded by NERC (grant reference number: NE/L013770/1) and awarded to the British Antarctic Survey with contribution from the National Oceanography Centre, the Met Office Hadley Centre, University College London, the University of Exeter, Oxford University, and the Alfred Wenger Institute. The aim of this project was to investigate how the Filchner Ice Shelf might respond to a warmer world, and what the impact of sea-level rise could be by the middle of this century. This collaborative initiative collected ~15,000 line-km of new aerogeophysical data using the 150MHz PASIN radar echo sounding system (Corr et al., 2007) deployed on a British Antarctic Survey (BAS) Twin Otter. The majority of flights were flown as part of FISS over the Support Force, Recovery, Slessor, and Bailey ice streams. Separate flights over Halley 6 research station and Brunt Ice Shelf were also collected as part of this season. The bed and surface elevation picks for the English Coast part of this season are available at: https://doi.org/10.5285/e07d62bf-d58c-4187-a019-59be998939cc.

  • An airborne radar survey was flown during the austral summer of 2015/16 over the Foundation Ice Stream, Bungenstock Ice Rise, and the Filchner ice shelf as part of the 5-year Filchner Ice Shelf System (FISS) project. This project was a NERC-funded (grant reference number: NE/L013770/1) collaborative initiative between the British Antarctic Survey, the National Oceanography Centre, the Met Office Hadley Centre, University College London, the University of Exeter, Oxford University, and the Alfred Wenger Institute to investigate how the Filchner Ice Shelf might respond to a warmer world, and what the impact of sea-level rise could be by the middle of this century. The 2015/16 aerogeophysics survey acquired ~7,000 line km of aerogeophysical data with a particular focus on the Foundation Ice Stream. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • This dataset contains bed and surface elevation picks derived from airborne radar collected during the POLARGAP 2015/16 project funded by the European Space Agency (ESA) and with in-kind contribution from the British Antarctic Survey, the Technical University of Denmark (DTU), the Norwegian Polar Institute (NPI) and the US National Science Foundation (NSF). This collaborative project collected ~38,000 line-km of new aerogeophysical data using the 150MHz PASIN radar echo sounding system (Corr et al., 2007) deployed on a British Antarctic Survey (BAS) Twin Otter. The primary objective of the POLARGAP campaign was to carry out an airborne gravity survey covering the southern polar gap beyond the coverage of the GOCE orbit. This dataset covers the South Pole as well as parts of the Support Force, Foundation and Recovery Glaciers. The bed pick data acquired during the POLARGAP survey over the Recovery Lakes is archived at NPI: https://doi.org/10.21334/npolar.2019.ae99f750.

  • An airborne radar survey was flown as part of the BBAS science programme funded by the British Antarctic Survey over the Pine Island Glacier system during the austral summer of 2004/05. This survey was a collaborative US/UK field campaign which undertook a systematic geophysical survey of the entire Amundsen Sea embayment using comparable airborne survey systems mounted in Twin Otter aircraft. Operating from a temporary field camp (PNE, S 77deg34'' W 095deg56''), we collected ~35,000 km of airborne survey data. Our aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, gravity meter, and the first version of a new ice-sounding radar system (PASIN) used for the first time to support this survey. We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • Aerogravity data collected as part of the seven nation Antarctica''s Gamburtsev Province (AGAP) expedition during the International Polar Year 2007-2009, and used to acquire a detailed image of the ice sheet bed deep in the interior of East Antarctica. Airborne geophysical methods were used to understand the fundamental structure shrouded beneath Dome A. Two twin Otter aircraft - one BAS, one United States Antarctic Program (USAP)- equipped with ice-sounding radars, laser ranging systems, gravity meters and magnetomemeters, operated from camps located on either side of Dome A. Airborne gravity measurements were acquired using LaCoste and Romberg air-sea gravimeter modified by ZLS Corporation, which is well-proven for Antarctic field work. A land-gravimeter was used to tie the still readings on the aircraft with the absolute gravity value at McMurdo Station.