agriculture
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
-
This dataset contains the results of a farmers’ survey in the Ping Catchment in Thailand. The aim of this survey was to identify the specific socioeconomic impacts that historical droughts in the Ping catchment have had for agricultural communities, and identify factors affecting adaptation decisions, as well as analyse the communications with and amongst farmers at the local scale in the Ping catchment during drought. Villages in the Ping catchment with a history of drought were selected to represent typical agricultural production typologies. In total, 176 questionnaires were completed with a close to even distribution of respondents coming from the provinces of Chiang Mai (n=41), Lamphun (n=45), Kamphaeng Phet (n=45) and Tak (n=45). Full details about this dataset can be found at https://doi.org/10.5285/155e1867-bc9d-44f0-9f85-0f682964f720
-
This dataset contains responses from an online choice experiment with associated socio-economic covariates on the topic of environmental land management schemes. Sample: 348 farmers based in the north of England in 2022. Full details about this dataset can be found at https://doi.org/10.5285/1409404f-564f-43c5-81dd-00339a674dc8
-
These datasets were used for a study investigating the prevalence of diurnal variability of soil nitrous oxide (N¬2O) emissions. The datasets contain 286 diurnal N¬2O flux datasets and 160 diurnal soil temperature datasets, which were extracted from 46 published journal articles that were selected from a literature search and passed through a set of eligibility criteria. The datasets also include processed diurnal N¬2O flux data, which were used to classify the diurnal N¬2O pattern of the datasets. Data of non-diurnal factors from the literature including soil pH, bulk density, soil texture, season of measurement, soil water-filled pore space, irrigation and grazing are also included in the datasets. Full details about this dataset can be found at https://doi.org/10.5285/94e37080-4383-4f6e-b14a-04ac2ac79bf0
-
Gridded land use map of Peninsular Malaysia with a resolution of approximate 25 meters for the year 2018. The map includes nine different classes: 1) non-paddy agriculture, 2) paddy fields, 3) rural residential, 4) urban residential, 5) commercial/institutional, 6) industrial/infrastructure, 7) roads, 8) urban and 9) others. The land use map was created as part of the project “Malaysia - Flood Impact Across Scales”. The project is funded under the Newton-Ungku Omar Fund ‘Understanding of the Impacts of Hydrometeorological Hazards in South East Asia’ call. The grant was jointly awarded by the Natural Environment Research Council and the MYPAIR Scheme under the Ministry of Higher Education of Malaysia. Full details about this dataset can be found at https://doi.org/10.5285/36df244e-11c8-44bc-aa9b-79427123c42c
-
This data set consist of a single file which contains a set of optimised global surface fluxes of methane (CH4), produced through variational inverse methods using the TOMCAT chemical transport model, and the INVICAT inverse transport model. These surface fluxes are produced as monthly mean values on the (approximately) 5.6-degree horizontal model grid. The associated uncertainty for the flux from each grid cell is also included. The fluxes and uncertainties are global and cover the period Jan 2010 - Dec 2018. The emissions from fossil fuels are labelled FF_FLUX, whilst the uncertainties are labelled FF_ERROR. The emissions from natural, agricultural and biomass burning sources are labelled NAT_FLUX, whilst the uncertainties are labelled NAT_ERROR. These two sectors (fossil fuel and non-fossil fuel) are solved for separately in the inversion. Flux and uncertainty units are kg(CH4)/m2/s, and time units are days since January 1st 2010. These emissions show improved performance relative to independent observations when included in the TOMCAT model. Further details about the data can be found in Wilson et al. (2020) in the documentation section.
-
The dataset contains model output from an agricultural land use model at kilometre scale resolution over Great Britain (GB) for four different climate and policy scenarios. Specifically, arable area is modelled for with or without a climate tipping point (standard (medium emissions scenario SRES-A1B) climate change vs Atlantic Meridional Overturning Circulation (AMOC) collapse) and with or without widespread irrigation use for farmers from 2000 to 2089. Full details about this dataset can be found at https://doi.org/10.5285/e1c1dbcf-2f37-429b-af19-a730f98600f6
-
This dataset includes the transcript of discussion group activities on Human Wildlife conflict, conducted with ten rural communities in Marrupa District, Niassa (Northern Mozambique). It also comprises the results of semi-structured interviews conducted individually in three of the ten selected communities. The ten villages were selected from a forest cover gradient running from villages with a higher forest cover to those within degraded forest areas and consequently low cover. The villages had similar infrastructure, soils, rainfall, and vegetation types. The dataset contains information on the occurrence of conflict with both vertebrate and invertebrate wild species, mitigation strategies, conflict seasonality and trends, but also its impact on agricultural production and livestock rearing. The discussion groups were conducted with six to ten people and the presence of the leader of each village, between May and July 2015. Data were collected as part of a project funded under the Ecosystem Services for Poverty Alleviation (ESPA) programme. Full details about this dataset can be found at https://doi.org/10.5285/7bd2e230-c219-4017-9914-b5cfd83a4eae
-
Data from 38 experimental sites across the UK and Ireland were collated resulting in 623 separate mineral fertiliser N2O emission factors (EF) estimates derived from field measurements. Data were either i) extracted from published studies in which one aim of the experimentation was to explicitly measure N2O and report EFs after a mineral fertiliser application, or ii) raw data were used from the Agricultural and Environmental Data Archive (AEDA). To find the published data, a survey of literature was conducted using Google Scholar for articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The following search terms and their variations were used: N2O, nitrous oxide, emission factor, mineral fertiliser, ammonium nitrate, urea, nitrification inhibitor, nitrogen use efficiency, agriculture, greenhouse gas, grassland and arable. This search based on keywords was complemented with a search through the literature cited in the articles found and known previous research. Full details about this dataset can be found at https://doi.org/10.5285/9948d1b9-caa1-4894-93e6-cc0f4326fced
-
This dataset details information collected from smallholder oil palm farms in Sabah, Malaysian Borneo. Including: management practices, oil palm fruit yield, understorey vegetation, and soil chemical properties (SOC, total N, total P and available P). We collected data between August to November 2019 from 40 smallholdings (defined as farms < 50 ha) across six governance areas in Sabah. We used responses from face-to-face questionnaires to collect information about their management practices, including Best Management Practices (BMPs), and reported Fresh Fruit Bunch (FFB) yields. We also carried out field surveys on these farms to quantify vegetation cover and soil chemical properties. All smallholder farms had mature fruiting trees i.e. > 8 years since planting. The project received ethical approval from the Biology Ethics Committee, University of York (Ref. SGA201906), and permission from the Sabah Biodiversity Council (Ref. JKM/MBS.1000-2/2 JLD.8), Danum Valley Management Committee (Ref. YS/DVMC/2019/27), and South East Asia Rainforest Research Partnership (project number 18033) for permission to conduct our research in Sabah, Malaysia. This work was funded by the NERC iCASE studentship (NE/R007624/1) and Proforest. Full details about this dataset can be found at https://doi.org/10.5285/38487932-b32a-4b15-9fda-ea812c463466
-
This dataset comprises 259 smallholder agricultural field surveys collected from twenty-six villages across three Districts in Mozambique, Africa. Surveys were conducted in ten fields in each of six villages in Mabalane District, Gaza Province, ten villages in Marrupa District, Niassa Province, and ten villages in Gurue District, Zambezia Province. Data were collected in Mabalane between May-Sep 2014, Marrupa between May-Aug 2015, and Gurue between Sep-Dec 2015. Fields were selected based on their age, location, and status as an active field at the time of the survey (i.e. no fallow fields were sampled). Structured interviews using questionnaires were conducted with each farmer to obtain information about current management practices (e.g. use of inputs, tilling, fire and residue management), age of the field, crops planted, crop yields, fallow cycles, floods, erosion and other problems such as crop pests and wild animals. The survey also includes qualitative observations about the fields at the time of the interview, including standing live trees and cropping systems. This dataset was collected as part of the Ecosystem Services for Poverty Alleviation (ESPA) funded ACES project , which aims to understand how changing land use impacts on ecosystem services and human wellbeing of the rural poor in Mozambique. Full details about this dataset can be found at https://doi.org/10.5285/78c5dcee-61c1-44be-9c47-8e9e2d03cb63