Keyword

atmosphere

81 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 81
  • The gridded Climatic Research Unit (CRU) Time-series (TS) data version 4.00 data are month-by-month variations in climate over the period 1901-2015, provided on high-resolution (0.5x0.5 degree) grids, produced by CRU at the University of East Anglia. The CRU TS4.00 variables are cloud cover, diurnal temperature range, frost day frequency, potential evapotranspiration (PET), precipitation, daily mean temperature, monthly average daily maximum and minimum temperature, and vapour pressure for the period January 1901 - December 2015. The CRU TS4.00 data were produced using angular-distance weighting (ADW) interpolation. All version 3 releases used triangulation routines in IDL. Please see the release notes for full details of this version update. CRU TS4.00 is a full release, differing only in methodology from the existing current release, v3.24.01. Both are released concurrently to support comparative evaluations between these two versions. The CRU TS4.00 data are monthly gridded fields based on monthly observational data calculated from daily or sub-daily data by National Meteorological Services and other external agents. The ASCII and NetCDF data files both contain monthly mean values for the various parameters. The NetCDF versions contain an additional variable, ’stn’, which provides, for each datum in the main variable, a count (between 0 and 8) of the number of stations used in that interpolation. All CRU TS output files are actual values - NOT anomalies.

  • The gridded Climatic Research Unit (CRU) Time-series (TS) data version 4.03 data are month-by-month variations in climate over the period 1901-2018, provided on high-resolution (0.5x0.5 degree) grids, produced by CRU at the University of East Anglia. The CRU TS4.03 variables are cloud cover, diurnal temperature range, frost day frequency, potential evapotranspiration (PET), precipitation, daily mean temperature, monthly average daily maximum and minimum temperature, and vapour pressure for the period January 1901 - December 2018. The CRU TS4.03 data were produced using angular-distance weighting (ADW) interpolation. All version 4 releases used triangulation routines in IDL. Please see the release notes for full details of this version update. The CRU TS4.03 data are monthly gridded fields based on monthly observational data calculated from daily or sub-daily data by National Meteorological Services and other external agents. The ASCII and NetCDF data files both contain monthly mean values for the various parameters. The NetCDF versions contain an additional integer variable, ’stn’, which provides, for each datum in the main variable, a count (between 0 and 8) of the number of stations used in that interpolation. The missing value code for 'stn' is -999. All CRU TS output files are actual values - NOT anomalies.

  • The Meteorological Research Flight (MRF) was a Met Office facility, which flew a well-instrumented C-130 Hercules aircraft for atmospheric research purposes. This dataset contains airborne atmospheric and chemistry measurements taken on board the Met Office C-130 Hercules aircraft flight A257 for research purposes.

  • The Meteorological Research Flight (MRF) was a Met Office facility, which flew a well-instrumented C-130 Hercules aircraft for atmospheric research purposes. This dataset contains airborne atmospheric and chemistry measurements taken on board the Met Office C-130 Hercules aircraft flight A646 for the UTLS-Ozone Dynamics and Chemistry of Frontal Zones (DCFZ) project. The location of the flight was over the Irish Sea and Wales in the vicinity of the MST radar at Aberystwyth and west of Chilbolton Radar.

  • The Meteorological Research Flight (MRF) was a Met Office facility, which flew a well-instrumented C-130 Hercules aircraft for atmospheric research purposes. This dataset contains airborne atmospheric and chemistry measurements taken on board the Met Office C-130 Hercules aircraft flight A312 for research purposes.

  • This dataset collection contains data from the ISB52 Improved Air Quality Forecasting project. The aim of the project was to develop a better understanding of air flow within the atmospheric boundary layer by gathering 3-dimensional air flow information using two identical Doppler lidars. The project compared parameters derived from the dual Doppler lidar measurements with inputs used in the UK Met Office air quality forecasting model. Field experiments were undertaken in March 2003 at Malvern and in July 2003 at RAF Northolt, West London, UK.

  • The Met. Research Flight (MRF) was a Met Office facility, which operated a well instrumented C-130 Hercules (also referred to as Mk.2 Hercules) aircraft for research purposes. The C-130 was in service from 1972 to 2001 and flew over 1800 research sorties. The large capacity and long endurance of this platform made it ideal for atmospheric research in the areas of cloud physics, atmospheric radiation, atmospheric chemistry, satellite activities, mesoscale meteorology and boundary layer studies. The BADC holds data collected by the C-130 during NERC (Natural Environment Research Council) funded flights, such as those made during ACSOE (Atmospheric Chemistry Studies in the Oceanic Environment) and UTLS (Upper Troposphere - Lower Stratosphere) projects. The basic set of measurements include ozone, nitrogen oxides, water vapour, aerosols, wind, position and temperature. These are often supplemented by project specific measurements. The aircraft was able to operate scientifically throughout the troposphere from a minimum altitude of 15 m (50 ft) where permitted, up to a maximum of 10 km. The aircraft had a maximum working flight time of 12 hours. The C-130 was taken out of service in March 2001 and a new joint NERC-Met Office Facility for Airborne Aircraft Measurements (FAAM) was established operating a BAe-146-301 aircraft.

  • Cascade was a NERC funded consortium project to study organized convection in the tropical atmosphere using large domain cloud system resolving model simulations. This datset collection contains measurements from atmospheric model runs of the tropics. Within the Cascade project a version of the Met Office Unified Model (UM) at horizontal resolutions of 1.5km - 40km was used Africa, Indian Ocean and West Pacific Ocean. The horizontal resolution allowed the individual cloud systems to simulate the large-scale organization. The combination of the high resolution and large domains allowed the upscale transports of heat, moisture and momentum and investigated the impact of these transports on the evolution of the synoptic and planetary scale systems. Two domains of interest were chosen to represent continental and oceanic convection respectively. Simulations of the West African Monsoon region were used to understand the range of factors which influence the diurnal cycle of convection over complex topography and to identify the impact of the diurnal cycle and other mesoscale organization on the synoptic organization of convection by African Easterly Waves. Simulations of the Indian Ocean and West Pacific Warm Pool were used to investigate the role of mesoscale and synoptic scale organization on the evolution of the Madden-Julian Oscillation and the influence of the diurnal cycle (e.g. land-sea breeze circulations) on the maintenance of the climate of the Maritime Continent region. In addition, simulations over an idealized ocean surface were used to investigate the organization of convection by equatorially trapped wave modes.

  • Cascade was a NERC funded consortium project to study organized convection and scale interactions in the tropical atmosphere using large domain cloud system resolving model simulations. The xfgyaa simulation was made using the Met Office Unified Model (UM) at 12km resolution over the domain 40E-183E, 22S-22N which encompasses the Indian Ocean West Pacific Warm Pool. Cascade Warm Pool simulations coincide with the Year of Tropical Convection. This dataset contains Warm Pool 12km model measurements from xfgyaa run.

  • A-CURE was a NERC funded project that tackled one of the most challenging and persistent problems in atmospheric science – understanding and quantifying how changes in aerosol particles caused by anthropogenic activities affect climate. The data here are monthly mean variable data from a large perturbed parameter ensemble of UKESM1 simulations, nudged to horizontal winds above around 2km. Each variable has 220 or 221 members, as indicated in file names. Some months have one fewer member because a model variant repeatedly did not run to completion due to combined model parameter values. The 221 members are model variants that combine the effects of 54 aerosol and physical atmosphere parameters. Variable data in this ensemble span the uncertainty in UKESM1 from these parametric sources.