From 1 - 4 / 4
  • QUERCC addresses land surface processes over timescales from days to centuries, with particular emphasis on the carbon cycle. Some processes are already well represented and validated in Dynamic Global Vegetation Models (DGVMs), while others that are known to impact on the carbon cycle are not. Independent carbon and vegetation data sets are being compared against DVGMs to assess their current state, and further key modules will be developed for nutrient cycling, which exerts a major feedback on carbon exchange, and for a greater resolution of plant processes. This dataset contains a global map of plant functional types that exert significant impacts on the carbon cycle as modelled by the Rothamsted Research institute based on the FAO (Food and Agriculture Organization) soil properties.

  • QUERCC addresses land surface processes over timescales from days to centuries, with particular emphasis on the carbon cycle. Some processes are already well represented and validated in Dynamic Global Vegetation Models (DGVMs), while others that are known to impact on the carbon cycle are not. Independent carbon and vegetation data sets are being compared against DVGMs to assess their current state, and further key modules will be developed for nutrient cycling, which exerts a major feedback on carbon exchange, and for a greater resolution of plant processes. This dataset contains Imogen output model data

  • The Principal Investigator in this project was Prof Ian Woodward from University of Sheffield, with 11 co-investigators at the Centre for Ecology and Hydrology (CEH), the Forestry Commission’s Forest Research, the Agriculture and the Environment Division at Rothamsted Research, and the Universities of Aberdeen, Edinburgh, Leeds, York, Oxford and Southampton. This dataset collection contains soil model output data. QUERCC addressed land surface processes over timescales from days to centuries, with particular emphasis on the carbon cycle. Some processes are already well represented and validated in Dynamic Global Vegetation Models (DGVMs), while others that are known to impact on the carbon cycle are not. Independent carbon and vegetation data sets were compared against DVGMs to assess their current state, and further key modules were developed for nutrient cycling, which exerts a major feedback on carbon exchange, and for a greater resolution of plant processes. A global map of plant functional types that exert significant impacts on the carbon cycle was also developed.

  • These data contain 408 instances of annual model output from JULES/IMOGEN simulations, covering the period between 1850-2100. Each simulation (which corresponds to one netcdf file) provides annual average of carbon stocks of the land, atmosphere and ocean store required to calculate the anthropogenic fossil fuel emissions as the residual of the yearly changes. Also included are the global warming variables, fractional land-cover, natural wetland extent and methane (CH4) flux and the soil temperature and moisture content for additional analysis. The spatial coverage is global with spatial resolution of the data is 2.5 degrees latitude, 3.75 degrees longitude. This dataset is the model output that was used in Comyn-Platt et al (2018) [ Comyn-Platt, E. et al. (2018). Carbon budgets for 1.5 and 2C targets lowered by natural wetland and permafrost feedbacks. Nature Geoscience. https://doi.org/10.1038/s41561-018-0174-9] Full details about this dataset can be found at https://doi.org/10.5285/1cebd79c-02e7-475a-a1da-1f26a963d41e