From 1 - 5 / 5
  • [This dataset is embargoed until March 31, 2023]. Location of peat cores and peat properties including moisture, bulk density, ash and organic matter content for short cores (50 cm) collected 10 month post-fire in high, medium and low severity areas within a drained and a near natural area in the footprint of a severe wildfire that impacted >6500 ha of blanket bog and wet heath in the Flow Country of Northern Scotland. Full details about this dataset can be found at https://doi.org/10.5285/31d3b90b-ca4d-41db-bf29-c9f7a426a0cc

  • This dataset contains concentrations of dissolved organic carbon, inorganic carbon, CO2, CH4 and N2O in the Black Burn stream which drains Auchencorth Moss peatland in South East Scotland. Concentrations and fluxes have been measured within the Black Burn on an approximately weekly to fortnightly basis from approximately 2006 to present (see https://doi.org/10.5285/3f0820a7-a8c8-4dd7-a058-8db79ba9c7fe). Concentrations in this dataset are from a series of new sites, upstream of the long-term sampling record, adjacent to an area of drains blocked by Scottish Natural Heritage. Measurements began during the drain blocking. Data was collected initially as part of a masters project for University of Edinburgh through Scotland's Rural College and continued by the Centre for Ecology & Hydrology. Full details about this dataset can be found at https://doi.org/10.5285/88ffbf44-0ec0-41d6-9814-04bc3535cd84

  • Dataset contains concentrations of particulate and dissolved organic carbon, inorganic carbon, CO2, CH4 and N2O in the Black Burn stream which drains Auchencorth Moss peatland in South East Scotland. Auchencorth Moss is part of the UK Centre for Ecology & Hydrology's UK Carbon Catchment project. Concentrations have been measured approximately weekly from January 2007 to December 2011 Full details about this dataset can be found at https://doi.org/10.5285/3f0820a7-a8c8-4dd7-a058-8db79ba9c7fe

  • [This dataset is embargoed until September 1, 2022]. Plot-scale percent cover of all plant species recorded between October and December 2019 in 360 1 x 1 m quadrats within two burnt areas of the 2019 Flow Country Wildfire and nearby unburnt control areas and within three additional historic burnt site with recorded wildfires in 1997, 2000 and 2011 respectively and their respective adjacent unburnt controls. At each site, quadrats were located in both “open” and “drain” plots to reflect the potential impact of artificial drainage on vegetation/fire response. For the sites within the footprint of the 2019 wildfire, fire damage data were also collected, only in burnt sites. Full details about this dataset can be found at https://doi.org/10.5285/4daf9b1e-c29f-4e38-855c-a68063e8e715

  • Data from two laboratory-based studies, both investigating the interactive effects of abiotic and biotic controls on peatland carbon cycling. Data comprise carbon dioxide and methane fluxes in peat, litter mass remaining and respiration rate data from litter bags on peat mesocosms, and biochemical and physical properties of peat. Data was collected in from the first laboratory study, which focused on identifying the interactive effects of small-scale temperature change, water table level and plant functional type legacy effects in peat on carbon dioxide (CO2) and methane (CH4) fluxes from peat collected from Black Law Wind Farm, Lanarkshire, Scotland. Data includes CO2 and CH4 fluxes from peat mesocosms (sampled in May 2011), measured six times from October 2011 to September 2012. Data collected from the second laboratory study between October 2012 and October 2013 focused on identifying the interactive effects of small-scale temperature change and plant functional type legacy effects in peat and litter on decomposition in peatlands, and included litter mass remaining (% of initial litter mass) and respiration rate data from litter bags on peat mesocosms. Peat and litter used in this laboratory study were collected from blanket bog peatland at Black Law Wind Farm, Lanarkshire, Scotland in October 2012. Peat and litter used in both studies were analysed for their biochemical and physical properties. Biochemical and physical properties data for the first laboratory study includes bulk density, pH, total carbon (C) content, total nitrogen (N) content, ratio of C to N, C stock, N stock, total phospholipid fatty acids (PLFAs), total fungal PLFAs, total bacterial PLFAs, ratio of fungal to bacterial PLFAs, total gram-positive bacterial PLFAs, total gram-negative bacterial PLFAs and ratio of gram-positive to gram-negative bacterial PLFAs of peat. Biochemical and physical properties data for the second laboratory study include total carbon (C) content, total nitrogen (N) content and the ratio of C to N for peat and litter. Biochemical and physical data properties for peat and litter were used to better understand the effects of plant functional type legacy on greenhouse gas fluxes and litter decomposition. Full details about this nonGeographicDataset can be found at https://doi.org/10.5285/e15fbbab-1cdd-4509-81a3-aa050e927dd0