80 record(s)
Type of resources
Contact for the resource
Provided by
Representation types
Update frequencies
From 1 - 10 / 80
  • The radar data collected by the Landmap project consist of data from ERS (European Remote Sensing) Satellites 1 and 2 from 1995 to 1999, ENVISAT ASAR (Advanced Synthetic Aperture Radar) (available in image mode, alternating polarisation and wide swath from 2004 onwards) and ALOS PALSAR (Advanced Land Orbiting Satellite Phased Array Type L-band Synthetic Aperture Radar) data where Fine Beam Single (FBS), Fine Beam Dual (FBD) and Polarimetric (PLR) data are available from 2007 - 2009 for areas of the UK and Republic of Ireland. The Joint Information Systems Committee (JISC) funded Landmap service which ran from 2001 to July 2014 collected and hosted a large amount of earth observation data for the majority of the UK, part of which was radar data. After removal of JISC funding in 2013, the Landmap service is no longer operational, with the data now held at the NEODC.

  • Radar data collected in ice-phase clouds at the Chilbolton Observatory using radars at 3, 35 and 94 GHz during 2014-2015. The experimental setup is described in Stein et al (2015) DOI: 10.1002/2014GL062170 - see related documents section on this record. Raw pulse-to-pulse data were collected from all 3 radars, and have been post processed to common, synchronised time bins, for maximum ease of colocation. These data were produced as part of the NERC funded Exploiting multi-wavelength radar Doppler spectra to characterise the microphysics of ice hydrometeors project (grant reference: NE/K012444/1).

  • The Aberystwyth Egrett Experiment: Gravity Waves, Turbulence, Mixing and Filamentation in the Tropopause Region is a Upper Troposphere Lower Stratosphere (UTLS) Round 2 project led by Dr J. Whiteway and Dr G. Vaughan, Department of Physics, University of Wales, Aberystwyth. This dataset contains NERC MST Radar Facility at Aberystwyth, Mid-Wales.

  • Data from the Synthetic Aperture Radar and Hyperspectral Airborne campaign (SHAC) run by the Natural Environment Research Council (NERC) and the British National Space Centre (BNSC). The campaign intended to provide support for industrial and academic research into earth resource and environmental monitoring. The campaign was managed by NRSC- now Infoterra. Fourteen different locations were flown in May and June 2000 in the campaign (see Fig.1), logistical constraints requiring two aircraft be used to fly the two instruments individually. The campaign involved a large number of researchers from NERC-EPFS and CEH, BAE Systems and InfoTerra on the ground collecting information vital to making best use of the airborne data: simultaneous spectral, sun photometer and GPS measurements and the installation by DERA, now QinetiQ, of corner reflectors to gain geo-coding of the E-SAR data. The outcome was previously unavailable, state-of the art, airborne data of the UK, which informed 11 research projects. The following list details the various SHAC2000 projects flown ScotSHAC campaign in Glen Affric Woodhouse, I., University of Edinburgh Fractional ground cover estimation from hyperspectral radiometry. Davenport, I., University of Reading Radar measurements of wheat crops at the Boxworth site. Quegan, S., University of Sheffield Land Surface Biophysical Parameters from Multi-angular Hyperspectral and SAR data. Lewis, P. , UCL Carbon Offset Verification of Forest Ecosystems. Dawson, T. , University of Oxford Remote Sensing of Leaks from Aqueducts. Malthus, T.,University of Edinburgh Integration of SAR and hyperspectral airborne data for quantitative analysis of estuarine convergent fronts and water quality (ref: BNSC SHAC 99/004). Ferrier, G., University of Hull Synergy of HyMap and digital elevation data for the analysis of upland peat erosion pattern and composition. McMorrow, J., University of Manchester Thetford Forest: Retrieval of biodiversity indicators for temperate forest from remote sensing; and Monks Wood: Quantifying habitat structure and quality for woodland birds. Balzter, H., CEH- NERC Remote sensing of hydrology and vegetation dynamics in the New Forest. Milton, E., University of Southampton Assessing the environmental impact of historical basemetal mining at Parys Mountain, Anglesey, with HyMap data. Lamb, A. and Denniss, A., Infoterra Ltd.

  • Data were collected from the 4th of April 2002 to the present by the Ultra-violet Raman lidar at Chilbolton Observatory, Hampshire. The dataset contains measurement and display of the full Doppler spectrum, and the moments Z, v and w of air.

  • Data were collected from the 4th of April 2002 to the present by the Ultra-violet Raman lidar at Chilbolton Observatory, Hampshire. The dataset contains measurements of attenuated backscatter coefficients of aerosols within the atmosphere, and a full Doppler spectrum, and moments Z, v, and w.

  • Data were collected from the 30th of March 1999 to the 30th of March 2011 by the CAMRa (Chilbolton Advanced Meteorological Radar) at Chilbolton Observatory, Hampshire. The dataset contains measurements of radial component of wind velocity, radar frequency, differential phase shift and unfolded Doppler velocity. Plots are also available of differential phase shift, Doppler velocity, radar reflectivity factor, and linear depolarisation ratio.

  • This dataset contains radar-derived measurements of cell-top height, size, 2 km reflectivity, and cell latitude and longitude from all convective cells between 14 May and 30 September 2016, where radar is available. The data was collected as part of the NERC/MoES Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS) field campaign. The seven sites analysed here represent four different Indian climate regions, allowing the study of the spatiotemporal development of convection during the 2016 monsoon season at high (1 km) resolution. Variation in these different cell statistics are found over timescales of variability such as the diurnal cycle, active-break periods, and monsoon progression. The data were collected as part of the INCOMPASS field campaign May-July 2016, funded by Natural Environmental Research Council (NERC) (NE/L01386X/1). The aim of the project was to improve the skill of rainfall prediction in operational weather and climate models by way of better understanding and representation of interactions between the land surface, boundary layer, convection, the large-scale environment and monsoon variability on a range of scales.

  • In 2007 the Centre for Ecology and Hydrology undertook continuation observational work as part of the DEFRA funded Acid Deposition Processes project. As part of this project data were collected a the Authencorth Moss field site near Edinburgh by a range of instruments routinely deployed at the site. In addition for this extension project the University of Manchester's 1290 MHz mobile wind profiler was deployed close to the Authencorth Moss field site to provide co-located vertical profiles of horizontal and vertical wind components as well as signal-to-noise (SNR) and spectal width measurements in January and February 2007. This dataset collection contains measurements from the University of Manchester's 1290 MHz mobile wind profiler.

  • This dataset collection contains radar data from the C-band Synthetic Aperture Radar (SAR) on the European Space Agency (ESA) Sentinel 1A satellite. Sentinel 1A was launched on 3rd April 2014 and provides continuous all-weather, day and night imaging radar data. Three acquisition modes are available: Stripmap (SM), Interferometric Wide swath (IW), and Extra Wide swath (EW). The main operational mode is IW. The EW mode is primarily used for wide area coastal monitoring. The SM mode is only used on special request for extraordinary events such as emergency management. The SM, IW and EW modes are available in single (HH or VV) and dual (HH+HV or VV+VH) polarisation. The C-band Synthetic Aperture Radar images the Earth with enhanced frequency and revisit times obtaining full Earth coverage every two weeks. Timeliness and reliability is optimised for emergency response and operational applications with Europe’s coastal zones and shipping routes being monitored on a daily basis. The data has a wide range of scientific applications including sea-ice monitoring, imaging of forests and investigation into the carbon cycle, and the analysis of earthquakes. Data are provided by the European Space Agency (ESA) and are made available via CEDA to any registered user.