Keyword

unknown

268 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
From 1 - 10 / 268
  • Categories  

    The WireWall project developed a prototype wave overtopping field measurement system. The system was designed and trailed at Crosby Beach, Hall Road carpark, north of Liverpool during winter 2018/2019. The data collected include both wave-by-wave overtopping volumes and horizontal velocities. At the time of the project the coastal structure at this site comprised a stepped revetment and vertical sea wall with a recurve. The system was designed at the National Oceanography Centre, validated in HR Wallingford’s flume facility and deployed with Sefton Council. Five datasets are available from the project. These contain processed data from: 1) The numerical wave overtopping estimates for past events used to design the system and plan deployments; 2) The numerical wave overtopping estimates for the joint wave and water level conditions with a 1 in 1 year return period probability to a 1 in 200 year return period probability in Liverpool Bay; 3) The dock side tests; 4) The physical laboratory experiments; and, 5) The field trials during windy spring tides. For Crosby these data can be used to validate/calibrate numerical tools used for coastal scheme design and flood hazard forecasting. Beach profile data collected alongside the overtopping measurements have been archived with the Northwest Regional Coastal Monitoring Programme, https://www.channelcoast.org/northwest/. This project was delivered by the National Oceanography Centre in collaboration with HR Wallingford. Our project partners were Sefton Council, Balfour Beatty, Environment Agency, Channel Coastal Observatory and Marlan Maritime Technologies.

  • Categories  

    This dataset consists of data from four stations (Batiki01, Batiki02, Beqa01 and Beqa02) that are part of the ReefTEMPS network of temperature sensors on the coastal domain of about twenty territories and island states in the South Pacific, Southwest and West Pacific. The Batiki data were collected in the coastal waters of Batiki Island, Fiji (Batiki01: latitude=-17.777467, longitude=179.179867, 2012 to 2015; Batiki02: latitude=-17.78552, longitude=179.13897, 2012 to 2017). The Beqa data were collected in the coastal waters of Beqa, Fiji (Beqa01: latitude=-18.41369, longitude=178.1675, 2014 to 2017; Beqa02: latitude=-18.37687, longitude=178.1956, 2014 to 2017). The dataset consists of water temperature data from a temperature logger attached to a coral head recording temperature every 10 minutes at around 10-12 metres depth with QC being applied following collection of the logger. The observation network is coordinated by the Grand Observatoire de l'environment et de la biodiversite terrestre et marine du Pacifique Sud (GOPS) (https://journals.openedition.org/netcom/1294).

  • Categories  

    This dataset is comprised of CTD temperature, salinity and potential temperature collected using seal tags. Data were collected as part of the NERC-funded project 'Ocean processes over the southern Weddell Sea shelf using seal tags'. Data were not collected as part of a cruise as seals were used as data activity platforms. 20 Weddell seals were tagged at the eastern end of the shelf-break north of the Filchner-Ronne Ice Shelf between 11 February 2011 and 03 May 2011. The aims of the project were: 1. The resulting data from the seals’ dives will provide the most comprehensive picture to date of the ocean conditions over the southern Weddell Sea continental shelf. 2. By mapping the temperature of the water near the sea floor it will be possible to determine the locations where dense waters leave the shelf, and the processes involved: either a direct flow down the slope under gravity, or initially mixing at the shelf edge with waters from off the shelf before descending down the slope. 3. To determine where the source waters come onto the shelf. 4. Though the research was primarily oceanographic, the movements and diving behaviour provide insight to seal biologists studying the animals' beahviour. Data were collected as part of NERC standard grants NE/G014086/1 and NE/G014833/1. NE/G014086/1 was the lead grant and was led by Dr Keith William Nicholls of NERC British Antarctic Survey, Science Programmes and runs from 01 April 2010 to 31 December 2018. The secondary grant, NE/G014833/1, was led by Professor Michael Fedak of University of St Andrews, Sea Mammal Research Unit and runs from 01 October 2010 to 28 February 2014. The seal tag CTD data have been received by BODC and are currently available in original format upon request.

  • Categories  

    This dataset comprises measurements of microbial uptake activities of betaine and choline, particulate phase osmolytes, amplicon sequencing of marker genese involved in Nitrogenous-osmolyte catabolism, and single cell genome data. Water samples were collected from at the L4 station of the Western Channel Observatory between April 27, 2015 to April 24, 2017 using Niskin bottles attached to a rosette sampler deployed from the RV Plymouth Quest. Nitrogenous osmolytes (glycine betaine, choline and trimethylamine N-oxide are essential components for most organisms in the marine environment. They enable cells to exist in a salty environment, but also have several other proposed uses. The aim of the project is to understand the seasonal cycle of glycine betaine, trimethylamine N-oxide and choline at Station L4. The water samples were analysed for the microbial assimilation and dissimilation activities using 14C labelled betaine and choline, respectively. The data will be incorporated to the European Regional Seas Ecosystem Model (ERSEM) coupled with the hydrodynamic model General Ocean Turbulent Model (GOTM) to simulate the N-osmolyte cycling at the L4 station. The data were collected under the project Biogeochemical cycling of N-osmolytes in the surface ocean funded by NERC Discovery Science grants NE/M002233/1 (parent), NE/M003361/1 (child), NE/M002934/1 (child). The grants were led by Dr Yin Chen, Dr Ruth Airs, and Dr Wei Huang respectively.

  • Categories  

    This dataset contains high and low water values manually digitised from historic hand-written tabulated ledgers, from the Port of London Authority (PLA). The dataset contains 463 years of data, from across 15 tide gauge sites along the Thames Estuary (bounding box = -0.3159W, 51.3914N, 1.3797E, 51.8428N), for the period 1911 to 1995. When these historic records are combined with digital records available from the PLA since 1995, the new sea level time-series spans the 109-year period from 1911 to 2019. London is one of the world’s most important coastal cities and is located around the Thames Estuary. Quantifying changes in sea levels in the Thames Estuary over the 20th century and early part of the 21st century is vital to inform future management of flood risk in London. This dataset is of importance for ongoing monitoring of mean sea-level rise, and changes in tidal range and extreme sea levels in the Thames Estuary. The project was led by the Ocean and Earth Science, University of Southampton and the Environment Agency, with contributions from the Leibniz Institute for Baltic Sea Research Warnemunde and the National Oceanography Centre. The study contributes to the objectives of UK National Environment Research Council (NERC) project E-Rise: Earliest detection of sea-level rise accelerations to inform lead time to upgrade/replace coastal flood defence infrastructure (NE/P009069/1; I.D.H.).

  • Categories  

    Data from this project is a UK contribution to a US research cruise that aimed to examine the impact of wave breaking and bubble processes on air-sea gas exchange. Measurements were made of whitecap fraction, wave state, wave bubble statistics and bubble properties beneath breaking waves on the R/V Knorr KN213-3 cruise departing Nuuk, Greenland October 9, 2013 arriving at Woods Hole, USA on November 12, 2013. Instruments and platforms used included an 11 meter long free-floating spar buoy equipped with wave wires, a bubble camera, acoustic resonators, a Waverider buoy and ship measurements of aerosol fluxes. Data generation were funded by NERC parent grant NE/J020893/1 awarded to Professor Ian Brooks and associated child grants NE/J020540/1 and NE/J022373/2 awarded to Mr Robin Pascal and Dr Helen Czerski respectively.

  • Categories  

    The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 4.0 is a gridded continuous terrain model covering ocean and land of the Arctic region. The grid has been compiled from data covering approximately 14.2 percent of the Arctic seafloor with multibeam bathymetry and about 5.5 percent with other sources, excluding digitized depth contours. The grid-cell size (resolution) is 200x200 m on a Polar Stereographic projection, with the true scale set at a latitude of 75 deg N and a central meridian of 0 deg. The horizontal datum is WGS 84 and the vertical datum is assumed Mean Sea Level. IBCAO Version 4.0 has been compiled with support from the Nippon Foundation-GEBCO-Seabed 2030 Project, an international effort whose goal it is to see the entire world ocean mapped by 2030. A geographic version of the Polar Stereographic grid serves as input to the General Bathymetric Chart of Oceans (GEBCO) global gridded terrain model.

  • Categories  

    The GEBCO_2019 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. The grid uses as a ‘base’ Version 1 of the SRTM15_plus data set (Sandwell et al). This data set is a fusion of land topography with measured and estimated seafloor topography. It is largely based on version 11 of SRTM30_plus (5). Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project, and from a number of international and national data repositories and regional mapping initiatives. The GEBCO_2019 Grid represents all data within the 2019 compilation. The compilation of the GEBCO_2019 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. The majority of the compilation was done using the 'remove-restore' procedure (Smith and Sandwell, 1997; Becker, Sandwell and Smith, 2009 and Hell and Jakobsson, 2011). This is a two stage process of computing the difference between the new data and the ‘base’ grid and then gridding the difference and adding the difference back to the existing ‘base’ grid. The aim is to achieve a smooth transition between the 'new' and 'base' data sets with the minimum of perturbation of the existing base data set. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The GEBCO_2019 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA).

  • Categories  

    This dataset includes two cruises of data collected to investigate Arctic hydrate dissociation as a consequence of climate change and to determine vulnerable methane reservoir and gas escape mechanisms. Work during both JR269A and JR269B was focused on two separate geographical areas. The first of these was west of Prins Karls Forland, in water depths of between 150 and 1200 m. At its landward end, this survey area crosses a region at water depths up to 400 m where a dense concentration of methane escape bubble plumes occur. The second survey area straddles the summit of the Vestnesa Ridge, in water depths of 1180 to 1400 m, and is also the site of methane escape bubble plumes within the water column and of fluid escape chimneys and pockmarks previously imaged at and beneath the sea bed. This area lies approximately 100 km west of the mouth of Kongsfjorden. Data collection took place between August 2011 and July 2012. The research expedition used a deep-towed, very high resolution seismic system to image the small-scale structures that convey gas to the seabed and to detect the presence of gas in the sediments. This was done in conjunction with an electromagnetic exploration system that uses a deep-towed transmitter and receivers on the seabed to derive the variations in electrical resistivity in the sediments beneath the seabed. The observations carried out on the two cruises included; underway, meteorological observations and echo sounder data, multichannel seismic reflection profiling data, wide angle seismic survey data, and ocean bottom seismometer (OBS) data, ocean bottom electro-magnetometer data and controlled source electromagnetic surveys (CSEM). The overall objectives of the project were to determine the spatial distribution of gas and hydrate accumulations beneath the sea bed; to investigate and understand gas transport and escape mechanisms, their spatial distribution, and the controls on these; and to quantify gas and hydrate saturation values in situ within the pore spaces of the shallow sediment reservoirs. The research is focused on specific areas where significant accumulations of methane hydrate and active methane venting through the sea floor were observed and documented during the earlier JR211 cruise in 2008. This is a NERC funded project hosted by University of Southampton. The data held at BODC include multichannel seismic reflection, TOPAS sub-bottom profiler and 2D seismic reflection data in SEG-Y format. No further data are expected.

  • Categories  

    This dataset contains wave data collected by surface moorings across three sites (D1, D2 and D3) west of the Isle of Islay between February 2012 and August 2012. There was a Datawell Mk.III directional Waverider buoy moored at each of the three sites collecting the wave data every 30 minutes. The data were collected as part of the metocean survey of the proposed Islay Offshore Windfarm. Partrac Ltd were contracted to conduct the data collection by SSE Renewables and provided the data to The Crown Estate as the landowner of the UK seabed out to 12 nautical miles. The data and associated metadata reports are held at the British Oceanographic Data Centre, as a MEDIN Data Archiving Centre.