unknown
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
-
A large number of charts (originals and copies) together with tabulations of data are also available, some of which date back to the 1850s. A more detailed description of these will be available once they have been systematically catalogued and archived.
-
The WireWall project developed a prototype wave overtopping field measurement system. The system was designed and trailed at Crosby Beach, Hall Road carpark, north of Liverpool during winter 2018/2019. The data collected include both wave-by-wave overtopping volumes and horizontal velocities. At the time of the project the coastal structure at this site comprised a stepped revetment and vertical sea wall with a recurve. The system was designed at the National Oceanography Centre, validated in HR Wallingford’s flume facility and deployed with Sefton Council. Five datasets are available from the project. These contain processed data from: 1) The numerical wave overtopping estimates for past events used to design the system and plan deployments; 2) The numerical wave overtopping estimates for the joint wave and water level conditions with a 1 in 1 year return period probability to a 1 in 200 year return period probability in Liverpool Bay; 3) The dock side tests; 4) The physical laboratory experiments; and, 5) The field trials during windy spring tides. For Crosby these data can be used to validate/calibrate numerical tools used for coastal scheme design and flood hazard forecasting. Beach profile data collected alongside the overtopping measurements have been archived with the Northwest Regional Coastal Monitoring Programme, https://www.channelcoast.org/northwest/. This project was delivered by the National Oceanography Centre in collaboration with HR Wallingford. Our project partners were Sefton Council, Balfour Beatty, Environment Agency, Channel Coastal Observatory and Marlan Maritime Technologies.
-
This data set consists of a bathymetric grid derived from multibeam bathymetry data from cruise JC071. The bathymetric grid was created by gridding the cleaned raw multibeam data from JC071 at 1/64 arc-minute intervals using a nearneighbour gridding algorithm from the Generic Mapping Tools (GMT) software system. The data set covers an approximate one degree square with the minimum and maximum longitude and latitude co-ordinates: 17.016667W-16.216667W; 48.78333N-49.28333N. This is located in the Northeast Atlantic Ocean area. The data were collected from 7th-8th May 2012 using an EM120 Multibeam Echo-sounder. The cruise was part of the Porcupine Abyssal Plain (PAP): sustained ocean observation project. The bathymetry data were collected on an opportunistic basis during the cruise. The cruise was operated by the National Oceanography Centre (NOC), equipment operated by National Marine Facilities Sea Systems. The bathymetric grid was created by BODC for contributing to the EMODnet High Resolution Seafloor Mapping (HRSM) Project.
-
The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 4.0 is a gridded continuous terrain model covering ocean and land of the Arctic region. The grid has been compiled from data covering approximately 14.2 percent of the Arctic seafloor with multibeam bathymetry and about 5.5 percent with other sources, excluding digitized depth contours. The grid-cell size (resolution) is 200x200 m on a Polar Stereographic projection, with the true scale set at a latitude of 75 deg N and a central meridian of 0 deg. The horizontal datum is WGS 84 and the vertical datum is assumed Mean Sea Level. IBCAO Version 4.0 has been compiled with support from the Nippon Foundation-GEBCO-Seabed 2030 Project, an international effort whose goal it is to see the entire world ocean mapped by 2030. A geographic version of the Polar Stereographic grid serves as input to the General Bathymetric Chart of Oceans (GEBCO) global gridded terrain model.
-
The data set consists of bathymetric contours, at 100m intervals, from a depth of 100m to 5000m. The data were digitised from two charts of the Northeast Atlantic compiled by geoscientists at the Institute of Oceanographic Sciences (IOS), Wormley, Surrey and published by the UK Hydrographic Office, Taunton. Admiralty Chart C6566: Bathymetry of the northeast Atlantic (IOS Sheet 1) - 'Reykjanes Ridge and Rockall Plateau' by A.S. Laughton, D.G. Roberts & P.M. Hunter published in February 1982 and covering the area (47° to 64°N, 13° to 37°W). Admiralty Chart C6567: Bathymetry of the northeast Atlantic (IOS Sheet 2) - 'Continental Margin around the British Isles' by D.G. Roberts, P.M. Hunter & A.S. Laughton published in February 1977 and covering the area (47° to 64°N, 6°E to 18°W). The data set is included in the Centenary Edition of the GEBCO Digital Atlas (GDA) as sheet G.02. Please note that within the GDA data set some areas covered by sheets IOS sheets 1 and 2 have been replaced by higher resolution data sets. Through the GDA software interface the data may be exported in ASCII or shapefile format.
-
The dataset consists of 2580 tiff images of tide gauge charts from Bowling, River Clyde. The images were taken from annual bound volumes of tide gauge charts (~1 page per week, 52 pages per volume). A typical volume measures 37 x 34 x 3.5 cm and pages are single sided. The ledgers for Bowling begin in 1888 and end in 1952, but under this project, only the charts up until 04/01/1939 were photographed. The trace on the original charts was generated by a float tide gauge. The float inside a stilling-well was connected by a wire run over pulleys to a pen that moved up and down as the tide rose and fell. The images were generated by a commercial scanning organisation (TownsWeb Archiving Ltd) using a planetary overhead book scanner. In July 2016 The Peel Group Ltd. (Glasgow) approached BODC to donate their tidal archive, due to office redevelopment. The archive consists of ledgers of tide gauge charts (345 annual bound volumes) and handwritten ledgers (91 bound books) from several locations along the Clyde, with the earliest record beginning in 1841 from Glasgow Harbour. Later that year BODC received a grant from the Marine Environmental Data and Information Network (MEDIN) to photograph a selection of the ledgers. MEDIN released these funds to support small Data Archiving Projects that increase access to industry marine data. Ledgers also exist for Broomielaw, Dalmuir, Gourock, Govan Wharf, Greenock, Partick Wharf Glasgow, Queen's Dock Entrance Glasgow and Rothesay Dock. Most begin in the late 19th Century and run to the mid-20th century. It is hoped that these will be digitised in the future, subject to funding.
-
This dataset contains high and low water values manually digitised from historic hand-written tabulated ledgers, from the Port of London Authority (PLA). The dataset contains 463 years of data, from across 15 tide gauge sites along the Thames Estuary (bounding box = -0.3159W, 51.3914N, 1.3797E, 51.8428N), for the period 1911 to 1995. When these historic records are combined with digital records available from the PLA since 1995, the new sea level time-series spans the 109-year period from 1911 to 2019. London is one of the world’s most important coastal cities and is located around the Thames Estuary. Quantifying changes in sea levels in the Thames Estuary over the 20th century and early part of the 21st century is vital to inform future management of flood risk in London. This dataset is of importance for ongoing monitoring of mean sea-level rise, and changes in tidal range and extreme sea levels in the Thames Estuary. The project was led by the Ocean and Earth Science, University of Southampton and the Environment Agency, with contributions from the Leibniz Institute for Baltic Sea Research Warnemunde and the National Oceanography Centre. The study contributes to the objectives of UK National Environment Research Council (NERC) project E-Rise: Earliest detection of sea-level rise accelerations to inform lead time to upgrade/replace coastal flood defence infrastructure (NE/P009069/1; I.D.H.).
-
This dataset comprises sea surface temperature measurements taken close to the time of high water at intervals of three to four days. The measuring programme consisted of approximately 50 observing sites around the shoreline of England and Wales and the data set spans the time period from 1963 to 1990. A few observing sites were already in existence when the network was established, for example observations at the Seven Stones and Varne Light Vessels go back as far as 1905. The Ministry of Agriculture, Fisheries and Food Lowestoft Fisheries Laboratory (MAFF), now known as the Centre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory (CEFAS) - part of the Department for Environment, Food and Rural Affairs (Defra), set up a database for these data, supplemented by both the earlier data and also by data from non-MAFF sources. Data from 1963 until 1990 are held at the British Oceanographic Data Centre (BODC). The time series is ongoing but data later than 1990 are not stored at BODC, these data are available from CEFAS.
-
The GEBCO_2020 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. In regions outside of the Arctic Ocean area, the grid uses as a base Version 2 of the SRTM15_plus data set (Tozer, B. et al, 2019). This data set is a fusion of land topography with measured and estimated seafloor topography. Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project. The GEBCO_2020 Grid represents all data within the 2020 compilation. The compilation of the GEBCO_2020 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. Outside of Polar regions, the gridded bathymetric data sets supplied by the Regional Centers, as sparse grids, i.e. only grid cells that contain data were populated, were included on to the base grid without any blending. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The GEBCO_2020 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA.
-
This dataset consists of significant wave height, peak wave period, second moment wave period and nautical wave direction. The dataset is a gridded dataset, with grid resolution of 1.85 km. It covers the entire Irish Sea area, with a precise range from -2.7 degrees longitude to -7 degrees longitude and from 51 degrees latitude to 56 degrees latitude. The data are hourly averages and cover the period from 01 January 1996 to 01 January 2007. The dataset was generated by the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled with the Wave Modelling model (POLCOMS-WAM) as part of the Natural Environment Research Council (NERC) CoFEE project which ran from April 2007 to September 2010. The wave parameters generated by POLCOMS-WAM were used as input conditions into a coastal processes and sediment transport model which looked at the response of the north Liverpool coastline to extreme flooding events. The dataset was generated by the Proudman Oceanographic Laboratory (since April 2010, part of the UK National Oceanography Centre). The dataset consists of 132 data files in Climate and Forecast (CF) compliant NetCDF format.