From 1 - 4 / 4
  • This data assesses the ability of 8 species, from 7 classes representing a range of functional groups, to survive, for 100 to 303 days, at temperatures 0 to 4 degrees Celsius above previously calculated long-term temperature limits. Survivors were then tested for acclimation responses to acute warming. Acclimatisation in the field was tested in the seastar Odontaster validus collected in different years, seasons and locations within Antarctica. Finally, we tested the importance of oxygen limitation in controlling survival duration by incubating 7 species under normoxia (20%) and mild hyperoxia (30%). This study was funded by Natural Environment Research Council core funding to the British Antarctic Survey and Spitfire DTP funding to R.E.S.

  • Derived climate model projections data produced as part of the UK Climate Projections 2018 (UKCP18) project. The data produced by the UK Met Office Hadley Centre provides information on changes in 21st century climate for the UK helping to inform adaptation to a changing climate. The derived climate model projections are estimated using a methodology based on time shift and other statistical approaches applied to a set of 28 projections comprising of 15 coupled simulations produced by the Met Office Hadley Centre, and 13 coupled simulations from CMIP5. The derived climate model projections exist for the RCP2.6 emissions scenario and for 2°C and 4°C global warming above pre-industrial levels. The derived climate model projections are provided on a 60km spatial grid for the UK region and the projections consist of time series for the RCP2.6 emissions scenario that cover 1900-2100 and a 50 year time series for each of the global warming levels. This dataset contains realisations scenario with global warming stabilised at 4°C

  • Derived climate model projections data produced as part of the UK Climate Projections 2018 (UKCP18) project. The data produced by the UK Met Office Hadley Centre provides information on changes in 21st century climate for the UK helping to inform adaptation to a changing climate. The derived climate model projections are estimated using a methodology based on time shift and other statistical approaches applied to a set of 28 projections comprising of 15 coupled simulations produced by the Met Office Hadley Centre, and 13 coupled simulations from CMIP5. The derived climate model projections exist for the RCP2.6 emissions scenario and for 2°C and 4°C global warming above pre-industrial levels. The derived climate model projections are provided on a 60km spatial grid for the UK region and the projections consist of time series for the RCP2.6 emissions scenario that cover 1900-2100 and a 50 year time series for each of the global warming levels. This dataset contains realisations scenario with global warming stabilised at 2°C.

  • The datasets consist of three csv files containing: (i) the numbers of DNA reads of 415 operational taxonomic units of fungi in 64 plots of a soil warming experiment sampled in 2007, 2009, 2010, 2011 and 2012, (ii) the taxonomic placements of the fungi and (iii) the treatments applied to the plots. The research was funded by an Antarctic Funding Initiative grant from the UK Natural Environment Research Council (NE/D00893X/1), a NERC GW4+ Doctoral Training Partnership studentship (grant number NE/L002434/1), NERC core funding to the British Antarctic Survey Long Term Monitoring and Survey programme, and monies derived from the University in Svalbard Arctic Mycology course (for which reference numbers are not available).