Contact for the resource

British Oceanographic Data Centre

1142 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
From 1 - 10 / 1142
  • Collection of geophysical and oceanographic data from several cruises dedicated to the repeated mapping and monitoring of three UK Marine Protected Areas (MPAs) - Haig Fras, Whittard Canyon and the Darwin Mounds. Data were collected during the following 2018-2020 cruises: JC166/7, DY103, DY108/9, DY120 and DY106. Data collection took place at three of the UK’s MPAs - Haig Fras Marine Conservation Zone (MCZ) in the Celtic Sea, Whittard Canyon submarine complex, which includes The Canyons MCZ, situated off the south west UK continental shelf and Darwin Mounds Special Area of Conservation (SAC), situated in the northern Rockall Trough. An Autonomous Underwater Vehicle (AUV) was used to collect photographic data, sidescan sonar and multibeam bathymetry. Other data included shipboard multibeam bathymetry data; moored ADCP, CTD and sediment trap datasets from repeat mooring deployments; ROV video, pushcores and specimen samples; settling plate experiments; box cores and mega cores; BioCam imagery. The MPAs under investigation had been previously surveyed on cruises JC035 (2009) and JC125 (2015) hence these cruises formed part of the Fixed Point Observations Underpinning Activity. Here repeated observations and surveys of MPAs and their surroundings aim to provide insight into the development and recovery of benthic ecosystems following natural and/or anthropogenic impacts. The data collection was undertaken by scientists at the UK’s National Oceanography Centre (NOC) and formed part of the Natural Environment Research Council (NERC) Climate Linked Atlantic Sector Science (CLASS) Programme (NERC grant reference NE/R015953/1).

  • The GEBCO_2021 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. In regions outside of the Arctic Ocean area, the grid uses as a base, Version 2.2 of the SRTM15+ data set between latitudes of 50 degrees South and 60 degrees North. This data set is a fusion of land topography with measured and estimated seafloor topography. This version of SRTM15+ is similar to version 2.1 [Tozer et al., 2020] with minor updates. Version 2.2 uses predicted depths based on the V29 gravity model [Sandwell et al., 2019] and approximately 400 small areas containing suspect data were visually identified and removed from the grid. Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project. The GEBCO_2021 Grid represents all data within the 2021 compilation. The compilation of the GEBCO_2021 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. Outside of Polar regions, the gridded bathymetric data sets are supplied by the Regional Centers as sparse grids, i.e. only grid cells that contain data were populated, were included on to the base grid without any blending. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The primary GEBCO_2021 grid contains land and ice surface elevation information - as provided for previous GEBCO grid releases. In addition, for the 2021 release a version with under-ice topography/bathymetry information for Greenland and Antarctica is also available. The GEBCO_2021 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA.

  • The Marine Autonomous Systems in Support of Marine Observations (MASSMO) campaign 4 dataset includes data collected by 8 submarine gliders, 2 wavegliders and one autonomous surface vehicle. The dataset comprises recovery version data. i.e. the data downloaded from a vehicle at the end of its mission. The data obtained from gliders operated by the University of East Anglia (UEA) is fully quality controlled. No quality control procedures have been applied to the data obtained from all other autonomous vehicles. Parameters observed include, temperature, salinity, chlorophyll fluorescence, optical backscatter, oxygen, acoustic noise and video data. The dataset was collected within the UK sector of the Faroe-Shetland Channel, focussing on the outer shelf and upper shelf. The work area had a bounding box of 58-62 degrees north and 2-9 degrees west. The MASSMO 4 campaign was run between 1st June 2017 until 7th June 2017 while platforms were deployed they were collecting data continuously. The dataset was collected using a mixture of three autonomous surface vehicles and eight submarine gliders. Glider sensor suites included CTD, bio-optics, oxygen optodes, and passive acoustic sensors. Additionally the surface vehicles were equipped with meteorological sensors and cameras. The campaign comprised a range of oceanographic data collection, but had a particular focus on passive acoustic monitoring of marine mammals and oceanographic features, and included development of near-real-time data delivery to operational data users. MASSMO 4 was co-ordinated by the National Oceanography Centre (NOC) in partnership with University of East Anglia (UEA), Plymouth Marine Laboratory (PML) and Scottish Association for Marine Science (SAMS). The mission was sponsored by Defence Science and Technology Laboratory (Dstl) and involved close co-operation with the NATO Centre for Maritime Research and Experimentation (CMRE) and UK Royal Navy, and was supported by several additional commercial, government and research partners.

  • Five ocean gliders were deployed during cruise SSD-024 as part of the Bay of Bengal Boundary Layer Experiment (BoBBLE), a collaborative project between India and the UK, funded jointly by Ministry of Earth Sciences (MoES), Government of India, and Natural Environmental Research Council, UK, through the “Drivers of Variability in the South Asian Monsoon” programme. The major objective of this project is to understand the east-west contrast in the upper layer characteristics of the southern Bay of Bengal and its interaction with the summer monsoon. The major observational objectives of SSD-024 were to profile the hydrography along 8°N in international waters and to carry out a 10-day time series at 8°N, 89°E. 14 scientists from India and 8 from the UK made up the scientific contingent of SSD-024. Five Seagliders were successfully deployed in the southern Bay of Bengal from ORV Sindhu Sadhana during the BoBBLE cruise. These autonomous underwater vehicles fly in a continuous repeating sawtooth pattern from the surface down to a maximum depth of 1000 m. They are all equipped with conductivity-temperature-depth (CTD) sensors. Additional sensors include dissolved oxygen, chlorophyll fluorescence and backscatter, photosynthetically active radiation (PAR) and microstructure sensors. Three Seagliders (including one microstructure enabled glider) are from the University of East Anglia (UEA), UK glider facility. The remaining two Seagliders are from the Marine Autonomous Robotics Systems (MARS) national UK facility. All five Seagliders were deployed and piloted by UEA and associated personnel.

  • A time series of ocean circulation in the North Atlantic from 1900-2018 was calculated using a number of gridded data products. These comprise the EN4.2.1 gridded temperature and salinity dataset (Good et al. 2013), using Gouretski and Reseghetti (2010) corrections (https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-1.html), gridded satellite altimetry from the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu) and gridded wind stress fields from the European Centre for Medium-Range Weather Forecasts (ECMWF, https://www.ecmwf.int). Both ERA-20C and ERA-Interim products were obtained to cover the periods 1900-1978 and 1979-2018 respectively.

  • This dataset describes an evaluation project using ocean glider data collected in the Celtic Sea, funded by the United Kingdom Integrated Marine Observing Network (UK-IMON) initiative. The data measured form a three dimensional trajectory through the water column covering a transect from just North West of the Scilly Isles, to the South west in the Celtic Sea. The date span for the data is 12 September 2013 to mid-October 2013 (expected). Deployment occurred off the RV Cefas Endeavour on 12th September and it is expected that the gliders will be recovered in Mid October. The project includes 2 ocean gliders, both equipped with a CTD and triplet optical phytoplankton fluorescence, backscatter and coloured dissolved organic matter sensor. There is also an echo sounder (on one glider) and Sea Mammal Research Unit (SMRU) Passive Acoustic Monitor (PAM) (cetacean monitoring) on the other glider. The goal of the evaluation project is to study tidal mixing and to contribute to oceanographic sensor development. The organisations contributing to the dataset are the UK National Oceanography Centre (NOC), the Centre for Environment, Fisheries & Aquaculture Science (CEFAS) and the Sea Mammal Research Unit (SMRU). The data are held by BODC as an archive of the real time data stream as transmitted by the glider. The delayed mode full resolution (downloaded on platform recovery) and delayed mode quality controlled data are expected in due course.

  • Nitrogen Fixation was determined from samples collected during CTD profiles at the surface and chlorophyll maximum once per day from the North Atlantic at approximately 24.5 degrees North on cruise D346 between 5th January and 19th February 2010. The samples were incubated at sea-surface temperature for 24 hours, filtered onto ashed-GF/F's and dried in oven at 50 degrees for further 24 hours. The data are being used as part of a wider study in the role iron has in nitrogen fixation. David Honey collected these data as part of his PhD, supervised by Martha Gledhill and Eric Achterberg.

  • The data set comprises those data collected on UK World Ocean Circulation Experiment (WOCE) cruises. The cruises completed to date have collected data either in the North Atlantic (RRS Charles Darwin 58, 59, 62, 62a, 68 and 78; RRS Discovery 223, 230 and 233) or in the Southern Ocean (RRS Discovery 199, 200, 201, 207, 213 and 214; RRS James Clark Ross 0a, 0b, 10, 16 and 27). Conductivity-temperature-depth (CTD) data are held from all 20 cruises. 14 out of the 16 shipborne acoustic Doppler current profiler (ADCP) data sets are held, those from RRS Discovery 230 and RRS James Clark Ross 0b are still to be received. 4 out of the 6 lowered ADCP data sets are held, those from RRS Discovery 230 and 233 are still to be received. 3 out of the 4 SeaSoar data sets are held, with that from RRS Discovery 223 still to be received. 12 out of 13 eXpendable BathyThermograph (XBT) data sets are held, with that from RRS James Clark Ross 0a still awaited. All main water bottle data sets have been received apart from chlorofluorocarbon (CFC) tracer data from RRS Discovery 223, 230 and 233. All of the main underway data sets thermosalinograph, meteorology, etc.) are held apart from thermosalinograph data from RRS James Clark Ross 0b.

  • The dataset comprises scanned images of historical analogue charts and data ledgers from eight tide gauge sites around the UK. The sites include: Sheerness, Belfast, and several sites around Liverpool managed by the Mersey Docks and Harbour Company namely, Eastham, Gladstone, Hilbre, Princes Pier, Tranmere and Waterloo. The Sheerness ledger data represents some of the earliest records of sea level data in the UK and cover the periods - January 1870 to December 1881, July 1882 to October 1894 and December 1929 to April 1941. Data availability for the other sites are: Belfast analogue charts - 27 November 1901 to 24 May 1902; Princes Pier ledgers: - 1941 to 1950, 1951 to 1960 and 1961 to 1970; Eastham, Gladstone, Hilbre, Princes Pier, Tranmere and Waterloo ledgers: - 1982 to 1988. The data recorded in some of the ledgers also describe meteorological measurements for example, air pressure, air temperature, wind speed and direction, and precipitation and evaporation. Funding to rescue these historical sea level data came from the Marine Environmental Data and Information Network (MEDIN) and the British Oceanographic Data Centre (BODC).These images have now been added to the National Oceanographic Database and are freely available to registered users (subject to licence agreement).

  • This dataset comprises hydrographic data from conductivity and temperature sensors deployed at fixed intervals on moorings within the water column or close to the sea bed on benthic frames. The measurements were collected at five sites within the Faroe – Shetland channel during the FS Poseidon cruise PO328 between 07 and 23 September 2005. The data have been processed, quality controlled and made available by the British Oceanographic Data Centre (BODC). The data were collected as part of the Slope Mixing Experiment, a Proudman Oceanographic Laboratory (POL) core Natural Environment Research Council (NERC) funded project, which aimed to estimate slope mixing and its effects on waters in the overturning circulation. Detailed in situ measurements of mixing in the water column) were to be combined with fine resolution 3-D and process models. The experiment was lead by POL, in collaboration with the School of Ocean Sciences, University of Wales, Bangor; the Scottish Association for Marine Science (SAMS); the University of Highlands and Islands and the Institute of Marine Studies (IMS) at the University of Plymouth. The Slope Mixing Experiment dataset also includes conductivity-temperature-depth (CTD) profiles, moored Acoustic Doppler Current Profilers (ADCP), vessel mounted ADCP sensors as well as 3-D and process models. These data are not available from BODC.